mart9992's picture
m
4c65bff
raw
history blame
6.23 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BiT model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
BIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json",
}
class BitConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BitModel`]. It is used to instantiate an BiT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the BiT
[google/bit-50](https://huggingface.co/google/bit-50) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embedding_size (`int`, *optional*, defaults to 64):
Dimensionality (hidden size) for the embedding layer.
hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
Dimensionality (hidden size) at each stage.
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
Depth (number of layers) for each stage.
layer_type (`str`, *optional*, defaults to `"preactivation"`):
The layer to use, it can be either `"preactivation"` or `"bottleneck"`.
hidden_act (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
are supported.
global_padding (`str`, *optional*):
Padding strategy to use for the convolutional layers. Can be either `"valid"`, `"same"`, or `None`.
num_groups (`int`, *optional*, defaults to 32):
Number of groups used for the `BitGroupNormActivation` layers.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The drop path rate for the stochastic depth.
embedding_dynamic_padding (`bool`, *optional*, defaults to `False`):
Whether or not to make use of dynamic padding for the embedding layer.
output_stride (`int`, *optional*, defaults to 32):
The output stride of the model.
width_factor (`int`, *optional*, defaults to 1):
The width factor for the model.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage.
Example:
```python
>>> from transformers import BitConfig, BitModel
>>> # Initializing a BiT bit-50 style configuration
>>> configuration = BitConfig()
>>> # Initializing a model (with random weights) from the bit-50 style configuration
>>> model = BitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "bit"
layer_types = ["preactivation", "bottleneck"]
supported_padding = ["SAME", "VALID"]
def __init__(
self,
num_channels=3,
embedding_size=64,
hidden_sizes=[256, 512, 1024, 2048],
depths=[3, 4, 6, 3],
layer_type="preactivation",
hidden_act="relu",
global_padding=None,
num_groups=32,
drop_path_rate=0.0,
embedding_dynamic_padding=False,
output_stride=32,
width_factor=1,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}")
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
global_padding = global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported")
self.num_channels = num_channels
self.embedding_size = embedding_size
self.hidden_sizes = hidden_sizes
self.depths = depths
self.layer_type = layer_type
self.hidden_act = hidden_act
self.global_padding = global_padding
self.num_groups = num_groups
self.drop_path_rate = drop_path_rate
self.embedding_dynamic_padding = embedding_dynamic_padding
self.output_stride = output_stride
self.width_factor = width_factor
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)