|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" XNLI utils (dataset loading and evaluation)""" |
|
|
|
|
|
import os |
|
|
|
from ...utils import logging |
|
from .utils import DataProcessor, InputExample |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class XnliProcessor(DataProcessor): |
|
""" |
|
Processor for the XNLI dataset. Adapted from |
|
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207 |
|
""" |
|
|
|
def __init__(self, language, train_language=None): |
|
self.language = language |
|
self.train_language = train_language |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
lg = self.language if self.train_language is None else self.train_language |
|
lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv")) |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = f"train-{i}" |
|
text_a = line[0] |
|
text_b = line[1] |
|
label = "contradiction" if line[2] == "contradictory" else line[2] |
|
if not isinstance(text_a, str): |
|
raise ValueError(f"Training input {text_a} is not a string") |
|
if not isinstance(text_b, str): |
|
raise ValueError(f"Training input {text_b} is not a string") |
|
if not isinstance(label, str): |
|
raise ValueError(f"Training label {label} is not a string") |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv")) |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
language = line[0] |
|
if language != self.language: |
|
continue |
|
guid = f"test-{i}" |
|
text_a = line[6] |
|
text_b = line[7] |
|
label = line[1] |
|
if not isinstance(text_a, str): |
|
raise ValueError(f"Training input {text_a} is not a string") |
|
if not isinstance(text_b, str): |
|
raise ValueError(f"Training input {text_b} is not a string") |
|
if not isinstance(label, str): |
|
raise ValueError(f"Training label {label} is not a string") |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["contradiction", "entailment", "neutral"] |
|
|
|
|
|
xnli_processors = { |
|
"xnli": XnliProcessor, |
|
} |
|
|
|
xnli_output_modes = { |
|
"xnli": "classification", |
|
} |
|
|
|
xnli_tasks_num_labels = { |
|
"xnli": 3, |
|
} |
|
|