File size: 20,903 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from argparse import ArgumentParser
from os import listdir, makedirs
from pathlib import Path
from typing import Dict, List, Optional, Tuple

from packaging.version import Version, parse

from transformers.pipelines import Pipeline, pipeline
from transformers.tokenization_utils import BatchEncoding
from transformers.utils import ModelOutput, is_tf_available, is_torch_available


# This is the minimal required version to
# support some ONNX Runtime features
ORT_QUANTIZE_MINIMUM_VERSION = parse("1.4.0")


SUPPORTED_PIPELINES = [
    "feature-extraction",
    "ner",
    "sentiment-analysis",
    "fill-mask",
    "question-answering",
    "text-generation",
    "translation_en_to_fr",
    "translation_en_to_de",
    "translation_en_to_ro",
]


class OnnxConverterArgumentParser(ArgumentParser):
    """
    Wraps all the script arguments supported to export transformers models to ONNX IR
    """

    def __init__(self):
        super().__init__("ONNX Converter")

        self.add_argument(
            "--pipeline",
            type=str,
            choices=SUPPORTED_PIPELINES,
            default="feature-extraction",
        )
        self.add_argument(
            "--model",
            type=str,
            required=True,
            help="Model's id or path (ex: bert-base-cased)",
        )
        self.add_argument("--tokenizer", type=str, help="Tokenizer's id or path (ex: bert-base-cased)")
        self.add_argument(
            "--framework",
            type=str,
            choices=["pt", "tf"],
            help="Framework for loading the model",
        )
        self.add_argument("--opset", type=int, default=11, help="ONNX opset to use")
        self.add_argument(
            "--check-loading",
            action="store_true",
            help="Check ONNX is able to load the model",
        )
        self.add_argument(
            "--use-external-format",
            action="store_true",
            help="Allow exporting model >= than 2Gb",
        )
        self.add_argument(
            "--quantize",
            action="store_true",
            help="Quantize the neural network to be run with int8",
        )
        self.add_argument("output")


def generate_identified_filename(filename: Path, identifier: str) -> Path:
    """
    Append a string-identifier at the end (before the extension, if any) to the provided filepath

    Args:
        filename: pathlib.Path The actual path object we would like to add an identifier suffix
        identifier: The suffix to add

    Returns: String with concatenated identifier at the end of the filename
    """
    return filename.parent.joinpath(filename.stem + identifier).with_suffix(filename.suffix)


def check_onnxruntime_requirements(minimum_version: Version):
    """
    Check onnxruntime is installed and if the installed version match is recent enough

    Raises:
        ImportError: If onnxruntime is not installed or too old version is found
    """
    try:
        import onnxruntime

        # Parse the version of the installed onnxruntime
        ort_version = parse(onnxruntime.__version__)

        # We require 1.4.0 minimum
        if ort_version < ORT_QUANTIZE_MINIMUM_VERSION:
            raise ImportError(
                f"We found an older version of onnxruntime ({onnxruntime.__version__}) "
                f"but we require onnxruntime to be >= {minimum_version} to enable all the conversions options.\n"
                "Please update onnxruntime by running `pip install --upgrade onnxruntime`"
            )

    except ImportError:
        raise ImportError(
            "onnxruntime doesn't seem to be currently installed. "
            "Please install the onnxruntime by running `pip install onnxruntime`"
            " and relaunch the conversion."
        )


def ensure_valid_input(model, tokens, input_names):
    """
    Ensure inputs are presented in the correct order, without any Non

    Args:
        model: The model used to forward the input data
        tokens: BatchEncoding holding the input data
        input_names: The name of the inputs

    Returns: Tuple

    """
    print("Ensuring inputs are in correct order")

    model_args_name = model.forward.__code__.co_varnames
    model_args, ordered_input_names = [], []
    for arg_name in model_args_name[1:]:  # start at index 1 to skip "self" argument
        if arg_name in input_names:
            ordered_input_names.append(arg_name)
            model_args.append(tokens[arg_name])
        else:
            print(f"{arg_name} is not present in the generated input list.")
            break

    print(f"Generated inputs order: {ordered_input_names}")
    return ordered_input_names, tuple(model_args)


def infer_shapes(nlp: Pipeline, framework: str) -> Tuple[List[str], List[str], Dict, BatchEncoding]:
    """
    Attempt to infer the static vs dynamic axes for each input and output tensors for a specific model

    Args:
        nlp: The pipeline object holding the model to be exported
        framework: The framework identifier to dispatch to the correct inference scheme (pt/tf)

    Returns:

        - List of the inferred input variable names
        - List of the inferred output variable names
        - Dictionary with input/output variables names as key and shape tensor as value
        - a BatchEncoding reference which was used to infer all the above information
    """

    def build_shape_dict(name: str, tensor, is_input: bool, seq_len: int):
        if isinstance(tensor, (tuple, list)):
            return [build_shape_dict(name, t, is_input, seq_len) for t in tensor]

        else:
            # Let's assume batch is the first axis with only 1 element (~~ might not be always true ...)
            axes = {[axis for axis, numel in enumerate(tensor.shape) if numel == 1][0]: "batch"}
            if is_input:
                if len(tensor.shape) == 2:
                    axes[1] = "sequence"
                else:
                    raise ValueError(f"Unable to infer tensor axes ({len(tensor.shape)})")
            else:
                seq_axes = [dim for dim, shape in enumerate(tensor.shape) if shape == seq_len]
                axes.update({dim: "sequence" for dim in seq_axes})

        print(f"Found {'input' if is_input else 'output'} {name} with shape: {axes}")
        return axes

    tokens = nlp.tokenizer("This is a sample output", return_tensors=framework)
    seq_len = tokens.input_ids.shape[-1]
    outputs = nlp.model(**tokens) if framework == "pt" else nlp.model(tokens)
    if isinstance(outputs, ModelOutput):
        outputs = outputs.to_tuple()
    if not isinstance(outputs, (list, tuple)):
        outputs = (outputs,)

    # Generate input names & axes
    input_vars = list(tokens.keys())
    input_dynamic_axes = {k: build_shape_dict(k, v, True, seq_len) for k, v in tokens.items()}

    # flatten potentially grouped outputs (past for gpt2, attentions)
    outputs_flat = []
    for output in outputs:
        if isinstance(output, (tuple, list)):
            outputs_flat.extend(output)
        else:
            outputs_flat.append(output)

    # Generate output names & axes
    output_names = [f"output_{i}" for i in range(len(outputs_flat))]
    output_dynamic_axes = {k: build_shape_dict(k, v, False, seq_len) for k, v in zip(output_names, outputs_flat)}

    # Create the aggregated axes representation
    dynamic_axes = dict(input_dynamic_axes, **output_dynamic_axes)
    return input_vars, output_names, dynamic_axes, tokens


def load_graph_from_args(
    pipeline_name: str, framework: str, model: str, tokenizer: Optional[str] = None, **models_kwargs
) -> Pipeline:
    """
    Convert the set of arguments provided through the CLI to an actual pipeline reference (tokenizer + model

    Args:
        pipeline_name: The kind of pipeline to use (ner, question-answering, etc.)
        framework: The actual model to convert the pipeline from ("pt" or "tf")
        model: The model name which will be loaded by the pipeline
        tokenizer: The tokenizer name which will be loaded by the pipeline, default to the model's value

    Returns: Pipeline object

    """
    # If no tokenizer provided
    if tokenizer is None:
        tokenizer = model

    # Check the wanted framework is available
    if framework == "pt" and not is_torch_available():
        raise Exception("Cannot convert because PyTorch is not installed. Please install torch first.")
    if framework == "tf" and not is_tf_available():
        raise Exception("Cannot convert because TF is not installed. Please install tensorflow first.")

    print(f"Loading pipeline (model: {model}, tokenizer: {tokenizer})")

    # Allocate tokenizer and model
    return pipeline(pipeline_name, model=model, tokenizer=tokenizer, framework=framework, model_kwargs=models_kwargs)


def convert_pytorch(nlp: Pipeline, opset: int, output: Path, use_external_format: bool):
    """
    Export a PyTorch backed pipeline to ONNX Intermediate Representation (IR

    Args:
        nlp: The pipeline to be exported
        opset: The actual version of the ONNX operator set to use
        output: Path where will be stored the generated ONNX model
        use_external_format: Split the model definition from its parameters to allow model bigger than 2GB

    Returns:

    """
    if not is_torch_available():
        raise Exception("Cannot convert because PyTorch is not installed. Please install torch first.")

    import torch
    from torch.onnx import export

    from transformers.pytorch_utils import is_torch_less_than_1_11

    print(f"Using framework PyTorch: {torch.__version__}")

    with torch.no_grad():
        input_names, output_names, dynamic_axes, tokens = infer_shapes(nlp, "pt")
        ordered_input_names, model_args = ensure_valid_input(nlp.model, tokens, input_names)

        # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
        # so we check the torch version for backwards compatibility
        if is_torch_less_than_1_11:
            export(
                nlp.model,
                model_args,
                f=output.as_posix(),
                input_names=ordered_input_names,
                output_names=output_names,
                dynamic_axes=dynamic_axes,
                do_constant_folding=True,
                use_external_data_format=use_external_format,
                enable_onnx_checker=True,
                opset_version=opset,
            )
        else:
            export(
                nlp.model,
                model_args,
                f=output.as_posix(),
                input_names=ordered_input_names,
                output_names=output_names,
                dynamic_axes=dynamic_axes,
                do_constant_folding=True,
                opset_version=opset,
            )


def convert_tensorflow(nlp: Pipeline, opset: int, output: Path):
    """
    Export a TensorFlow backed pipeline to ONNX Intermediate Representation (IR)

    Args:
        nlp: The pipeline to be exported
        opset: The actual version of the ONNX operator set to use
        output: Path where will be stored the generated ONNX model

    Notes: TensorFlow cannot export model bigger than 2GB due to internal constraint from TensorFlow

    """
    if not is_tf_available():
        raise Exception("Cannot convert because TF is not installed. Please install tensorflow first.")

    print("/!\\ Please note TensorFlow doesn't support exporting model > 2Gb /!\\")

    try:
        import tensorflow as tf
        import tf2onnx
        from tf2onnx import __version__ as t2ov

        print(f"Using framework TensorFlow: {tf.version.VERSION}, tf2onnx: {t2ov}")

        # Build
        input_names, output_names, dynamic_axes, tokens = infer_shapes(nlp, "tf")

        # Forward
        nlp.model.predict(tokens.data)
        input_signature = [tf.TensorSpec.from_tensor(tensor, name=key) for key, tensor in tokens.items()]
        model_proto, _ = tf2onnx.convert.from_keras(
            nlp.model, input_signature, opset=opset, output_path=output.as_posix()
        )

    except ImportError as e:
        raise Exception(
            f"Cannot import {e.name} required to convert TF model to ONNX. Please install {e.name} first. {e}"
        )


def convert(
    framework: str,
    model: str,
    output: Path,
    opset: int,
    tokenizer: Optional[str] = None,
    use_external_format: bool = False,
    pipeline_name: str = "feature-extraction",
    **model_kwargs,
):
    """
    Convert the pipeline object to the ONNX Intermediate Representation (IR) format

    Args:
        framework: The framework the pipeline is backed by ("pt" or "tf")
        model: The name of the model to load for the pipeline
        output: The path where the ONNX graph will be stored
        opset: The actual version of the ONNX operator set to use
        tokenizer: The name of the model to load for the pipeline, default to the model's name if not provided
        use_external_format:
            Split the model definition from its parameters to allow model bigger than 2GB (PyTorch only)
        pipeline_name: The kind of pipeline to instantiate (ner, question-answering, etc.)
        model_kwargs: Keyword arguments to be forwarded to the model constructor

    Returns:

    """
    warnings.warn(
        "The `transformers.convert_graph_to_onnx` package is deprecated and will be removed in version 5 of"
        " Transformers",
        FutureWarning,
    )
    print(f"ONNX opset version set to: {opset}")

    # Load the pipeline
    nlp = load_graph_from_args(pipeline_name, framework, model, tokenizer, **model_kwargs)

    if not output.parent.exists():
        print(f"Creating folder {output.parent}")
        makedirs(output.parent.as_posix())
    elif len(listdir(output.parent.as_posix())) > 0:
        raise Exception(f"Folder {output.parent.as_posix()} is not empty, aborting conversion")

    # Export the graph
    if framework == "pt":
        convert_pytorch(nlp, opset, output, use_external_format)
    else:
        convert_tensorflow(nlp, opset, output)


def optimize(onnx_model_path: Path) -> Path:
    """
    Load the model at the specified path and let onnxruntime look at transformations on the graph to enable all the
    optimizations possible

    Args:
        onnx_model_path: filepath where the model binary description is stored

    Returns: Path where the optimized model binary description has been saved

    """
    from onnxruntime import InferenceSession, SessionOptions

    # Generate model name with suffix "optimized"
    opt_model_path = generate_identified_filename(onnx_model_path, "-optimized")
    sess_option = SessionOptions()
    sess_option.optimized_model_filepath = opt_model_path.as_posix()
    _ = InferenceSession(onnx_model_path.as_posix(), sess_option)

    print(f"Optimized model has been written at {opt_model_path}: \N{heavy check mark}")
    print("/!\\ Optimized model contains hardware specific operators which might not be portable. /!\\")

    return opt_model_path


def quantize(onnx_model_path: Path) -> Path:
    """
    Quantize the weights of the model from float32 to in8 to allow very efficient inference on modern CPU

    Args:
        onnx_model_path: Path to location the exported ONNX model is stored

    Returns: The Path generated for the quantized
    """
    import onnx
    import onnxruntime
    from onnx.onnx_pb import ModelProto
    from onnxruntime.quantization import QuantizationMode
    from onnxruntime.quantization.onnx_quantizer import ONNXQuantizer
    from onnxruntime.quantization.registry import IntegerOpsRegistry

    # Load the ONNX model
    onnx_model = onnx.load(onnx_model_path.as_posix())

    if parse(onnx.__version__) < parse("1.5.0"):
        print(
            "Models larger than 2GB will fail to quantize due to protobuf constraint.\n"
            "Please upgrade to onnxruntime >= 1.5.0."
        )

    # Copy it
    copy_model = ModelProto()
    copy_model.CopyFrom(onnx_model)

    # Construct quantizer
    # onnxruntime renamed input_qType to activation_qType in v1.13.1, so we
    # check the onnxruntime version to ensure backward compatibility.
    # See also: https://github.com/microsoft/onnxruntime/pull/12873
    if parse(onnxruntime.__version__) < parse("1.13.1"):
        quantizer = ONNXQuantizer(
            model=copy_model,
            per_channel=False,
            reduce_range=False,
            mode=QuantizationMode.IntegerOps,
            static=False,
            weight_qType=True,
            input_qType=False,
            tensors_range=None,
            nodes_to_quantize=None,
            nodes_to_exclude=None,
            op_types_to_quantize=list(IntegerOpsRegistry),
        )
    else:
        quantizer = ONNXQuantizer(
            model=copy_model,
            per_channel=False,
            reduce_range=False,
            mode=QuantizationMode.IntegerOps,
            static=False,
            weight_qType=True,
            activation_qType=False,
            tensors_range=None,
            nodes_to_quantize=None,
            nodes_to_exclude=None,
            op_types_to_quantize=list(IntegerOpsRegistry),
        )

    # Quantize and export
    quantizer.quantize_model()

    # Append "-quantized" at the end of the model's name
    quantized_model_path = generate_identified_filename(onnx_model_path, "-quantized")

    # Save model
    print(f"Quantized model has been written at {quantized_model_path}: \N{heavy check mark}")
    onnx.save_model(quantizer.model.model, quantized_model_path.as_posix())

    return quantized_model_path


def verify(path: Path):
    from onnxruntime import InferenceSession, SessionOptions
    from onnxruntime.capi.onnxruntime_pybind11_state import RuntimeException

    print(f"Checking ONNX model loading from: {path} ...")
    try:
        onnx_options = SessionOptions()
        _ = InferenceSession(path.as_posix(), onnx_options, providers=["CPUExecutionProvider"])
        print(f"Model {path} correctly loaded: \N{heavy check mark}")
    except RuntimeException as re:
        print(f"Error while loading the model {re}: \N{heavy ballot x}")


if __name__ == "__main__":
    parser = OnnxConverterArgumentParser()
    args = parser.parse_args()

    # Make sure output is absolute path
    args.output = Path(args.output).absolute()

    try:
        print("\n====== Converting model to ONNX ======")
        # Convert
        convert(
            args.framework,
            args.model,
            args.output,
            args.opset,
            args.tokenizer,
            args.use_external_format,
            args.pipeline,
        )

        if args.quantize:
            # Ensure requirements for quantization on onnxruntime is met
            check_onnxruntime_requirements(ORT_QUANTIZE_MINIMUM_VERSION)

            # onnxruntime optimizations doesn't provide the same level of performances on TensorFlow than PyTorch
            if args.framework == "tf":
                print(
                    "\t Using TensorFlow might not provide the same optimization level compared to PyTorch.\n"
                    "\t For TensorFlow users you can try optimizing the model directly through onnxruntime_tools.\n"
                    "\t For more information, please refer to the onnxruntime documentation:\n"
                    "\t\thttps://github.com/microsoft/onnxruntime/tree/master/onnxruntime/python/tools/transformers\n"
                )

            print("\n====== Optimizing ONNX model ======")

            # Quantization works best when using the optimized version of the model
            args.optimized_output = optimize(args.output)

            # Do the quantization on the right graph
            args.quantized_output = quantize(args.optimized_output)

        # And verify
        if args.check_loading:
            print("\n====== Check exported ONNX model(s) ======")
            verify(args.output)

            if hasattr(args, "optimized_output"):
                verify(args.optimized_output)

            if hasattr(args, "quantized_output"):
                verify(args.quantized_output)

    except Exception as e:
        print(f"Error while converting the model: {e}")
        exit(1)