File size: 9,434 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from typing import Any, Dict, List, Union

from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline


if is_vision_available():
    from PIL import Image

    from ..image_utils import load_image

if is_torch_available():
    import torch

    from transformers.modeling_outputs import BaseModelOutput

    from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES

logger = logging.get_logger(__name__)


@add_end_docstrings(PIPELINE_INIT_ARGS)
class ZeroShotObjectDetectionPipeline(ChunkPipeline):
    """
    Zero shot object detection pipeline using `OwlViTForObjectDetection`. This pipeline predicts bounding boxes of
    objects when you provide an image and a set of `candidate_labels`.

    Example:

    ```python
    >>> from transformers import pipeline

    >>> detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection")
    >>> detector(
    ...     "http://images.cocodataset.org/val2017/000000039769.jpg",
    ...     candidate_labels=["cat", "couch"],
    ... )
    [{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.254, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}]

    >>> detector(
    ...     "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png",
    ...     candidate_labels=["head", "bird"],
    ... )
    [{'score': 0.119, 'label': 'bird', 'box': {'xmin': 71, 'ymin': 170, 'xmax': 410, 'ymax': 508}}]
    ```

    Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)

    This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"zero-shot-object-detection"`.

    See the list of available models on
    [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-object-detection).
    """

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        if self.framework == "tf":
            raise ValueError(f"The {self.__class__} is only available in PyTorch.")

        requires_backends(self, "vision")
        self.check_model_type(MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES)

    def __call__(
        self,
        image: Union[str, "Image.Image", List[Dict[str, Any]]],
        candidate_labels: Union[str, List[str]] = None,
        **kwargs,
    ):
        """
        Detect objects (bounding boxes & classes) in the image(s) passed as inputs.

        Args:
            image (`str`, `PIL.Image` or `List[Dict[str, Any]]`):
                The pipeline handles three types of images:

                - A string containing an http url pointing to an image
                - A string containing a local path to an image
                - An image loaded in PIL directly

                You can use this parameter to send directly a list of images, or a dataset or a generator like so:

                ```python
                >>> from transformers import pipeline

                >>> detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection")
                >>> detector(
                ...     [
                ...         {
                ...             "image": "http://images.cocodataset.org/val2017/000000039769.jpg",
                ...             "candidate_labels": ["cat", "couch"],
                ...         },
                ...         {
                ...             "image": "http://images.cocodataset.org/val2017/000000039769.jpg",
                ...             "candidate_labels": ["cat", "couch"],
                ...         },
                ...     ]
                ... )
                [[{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.25, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}], [{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.254, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}]]
                ```


            candidate_labels (`str` or `List[str]` or `List[List[str]]`):
                What the model should recognize in the image.

            threshold (`float`, *optional*, defaults to 0.1):
                The probability necessary to make a prediction.

            top_k (`int`, *optional*, defaults to None):
                The number of top predictions that will be returned by the pipeline. If the provided number is `None`
                or higher than the number of predictions available, it will default to the number of predictions.

            timeout (`float`, *optional*, defaults to None):
                The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
                the call may block forever.


        Return:
            A list of lists containing prediction results, one list per input image. Each list contains dictionaries
            with the following keys:

            - **label** (`str`) -- Text query corresponding to the found object.
            - **score** (`float`) -- Score corresponding to the object (between 0 and 1).
            - **box** (`Dict[str,int]`) -- Bounding box of the detected object in image's original size. It is a
              dictionary with `x_min`, `x_max`, `y_min`, `y_max` keys.
        """
        if "text_queries" in kwargs:
            candidate_labels = kwargs.pop("text_queries")

        if isinstance(image, (str, Image.Image)):
            inputs = {"image": image, "candidate_labels": candidate_labels}
        else:
            inputs = image
        results = super().__call__(inputs, **kwargs)
        return results

    def _sanitize_parameters(self, **kwargs):
        preprocess_params = {}
        if "timeout" in kwargs:
            preprocess_params["timeout"] = kwargs["timeout"]
        postprocess_params = {}
        if "threshold" in kwargs:
            postprocess_params["threshold"] = kwargs["threshold"]
        if "top_k" in kwargs:
            postprocess_params["top_k"] = kwargs["top_k"]
        return preprocess_params, {}, postprocess_params

    def preprocess(self, inputs, timeout=None):
        image = load_image(inputs["image"], timeout=timeout)
        candidate_labels = inputs["candidate_labels"]
        if isinstance(candidate_labels, str):
            candidate_labels = candidate_labels.split(",")

        target_size = torch.tensor([[image.height, image.width]], dtype=torch.int32)
        for i, candidate_label in enumerate(candidate_labels):
            text_inputs = self.tokenizer(candidate_label, return_tensors=self.framework)
            image_features = self.image_processor(image, return_tensors=self.framework)
            yield {
                "is_last": i == len(candidate_labels) - 1,
                "target_size": target_size,
                "candidate_label": candidate_label,
                **text_inputs,
                **image_features,
            }

    def _forward(self, model_inputs):
        target_size = model_inputs.pop("target_size")
        candidate_label = model_inputs.pop("candidate_label")
        is_last = model_inputs.pop("is_last")

        outputs = self.model(**model_inputs)

        model_outputs = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
        return model_outputs

    def postprocess(self, model_outputs, threshold=0.1, top_k=None):
        results = []
        for model_output in model_outputs:
            label = model_output["candidate_label"]
            model_output = BaseModelOutput(model_output)
            outputs = self.image_processor.post_process_object_detection(
                outputs=model_output, threshold=threshold, target_sizes=model_output["target_size"]
            )[0]

            for index in outputs["scores"].nonzero():
                score = outputs["scores"][index].item()
                box = self._get_bounding_box(outputs["boxes"][index][0])

                result = {"score": score, "label": label, "box": box}
                results.append(result)

        results = sorted(results, key=lambda x: x["score"], reverse=True)
        if top_k:
            results = results[:top_k]

        return results

    def _get_bounding_box(self, box: "torch.Tensor") -> Dict[str, int]:
        """
        Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... }

        Args:
            box (`torch.Tensor`): Tensor containing the coordinates in corners format.

        Returns:
            bbox (`Dict[str, int]`): Dict containing the coordinates in corners format.
        """
        if self.framework != "pt":
            raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
        xmin, ymin, xmax, ymax = box.int().tolist()
        bbox = {
            "xmin": xmin,
            "ymin": ymin,
            "xmax": xmax,
            "ymax": ymax,
        }
        return bbox