File size: 52,269 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import csv
import importlib
import json
import os
import pickle
import sys
import traceback
import types
import warnings
from abc import ABC, abstractmethod
from collections import UserDict
from contextlib import contextmanager
from os.path import abspath, exists
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union

from ..dynamic_module_utils import custom_object_save
from ..feature_extraction_utils import PreTrainedFeatureExtractor
from ..image_processing_utils import BaseImageProcessor
from ..modelcard import ModelCard
from ..models.auto.configuration_auto import AutoConfig
from ..tokenization_utils import PreTrainedTokenizer
from ..utils import ModelOutput, add_end_docstrings, infer_framework, is_tf_available, is_torch_available, logging


GenericTensor = Union[List["GenericTensor"], "torch.Tensor", "tf.Tensor"]

if is_tf_available():
    import tensorflow as tf

    from ..models.auto.modeling_tf_auto import TFAutoModel

if is_torch_available():
    import torch
    from torch.utils.data import DataLoader, Dataset

    from ..models.auto.modeling_auto import AutoModel

    # Re-export for backward compatibility
    from .pt_utils import KeyDataset
else:
    Dataset = None
    KeyDataset = None

if TYPE_CHECKING:
    from ..modeling_tf_utils import TFPreTrainedModel
    from ..modeling_utils import PreTrainedModel


logger = logging.get_logger(__name__)


def no_collate_fn(items):
    if len(items) != 1:
        raise ValueError("This collate_fn is meant to be used with batch_size=1")
    return items[0]


def _pad(items, key, padding_value, padding_side):
    batch_size = len(items)
    if isinstance(items[0][key], torch.Tensor):
        # Others include `attention_mask` etc...
        shape = items[0][key].shape
        dim = len(shape)
        if key in ["pixel_values", "image"]:
            # This is probable image so padding shouldn't be necessary
            # B, C, H, W
            return torch.cat([item[key] for item in items], dim=0)
        elif dim == 4 and key == "input_features":
            # this is probably a mel spectrogram batched
            return torch.cat([item[key] for item in items], dim=0)
        max_length = max(item[key].shape[1] for item in items)
        min_length = min(item[key].shape[1] for item in items)
        dtype = items[0][key].dtype

        if dim == 2:
            if max_length == min_length:
                # Bypass for `ImageGPT` which doesn't provide a padding value, yet
                # we can consistently pad since the size should be matching
                return torch.cat([item[key] for item in items], dim=0)
            tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
        elif dim == 3:
            tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value
        elif dim == 4:
            tensor = torch.zeros((batch_size, max_length, shape[-2], shape[-1]), dtype=dtype) + padding_value

        for i, item in enumerate(items):
            if dim == 2:
                if padding_side == "left":
                    tensor[i, -len(item[key][0]) :] = item[key][0].clone()
                else:
                    tensor[i, : len(item[key][0])] = item[key][0].clone()
            elif dim == 3:
                if padding_side == "left":
                    tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
                else:
                    tensor[i, : len(item[key][0]), :] = item[key][0].clone()
            elif dim == 4:
                if padding_side == "left":
                    tensor[i, -len(item[key][0]) :, :, :] = item[key][0].clone()
                else:
                    tensor[i, : len(item[key][0]), :, :] = item[key][0].clone()

        return tensor
    else:
        return [item[key] for item in items]


def pad_collate_fn(tokenizer, feature_extractor):
    # Tokenizer
    t_padding_side = None
    # Feature extractor
    f_padding_side = None
    if tokenizer is None and feature_extractor is None:
        raise ValueError("Pipeline without tokenizer or feature_extractor cannot do batching")
    if tokenizer is not None:
        if tokenizer.pad_token_id is None:
            raise ValueError(
                "Pipeline with tokenizer without pad_token cannot do batching. You can try to set it with "
                "`pipe.tokenizer.pad_token_id = model.config.eos_token_id`."
            )
        else:
            t_padding_value = tokenizer.pad_token_id
            t_padding_side = tokenizer.padding_side
    if feature_extractor is not None:
        # Feature extractor can be images, where no padding is expected
        f_padding_value = getattr(feature_extractor, "padding_value", None)
        f_padding_side = getattr(feature_extractor, "padding_side", None)

    if t_padding_side is not None and f_padding_side is not None and t_padding_side != f_padding_side:
        raise ValueError(
            f"The feature extractor, and tokenizer don't agree on padding side {t_padding_side} != {f_padding_side}"
        )
    padding_side = "right"
    if t_padding_side is not None:
        padding_side = t_padding_side
    if f_padding_side is not None:
        padding_side = f_padding_side

    def inner(items):
        keys = set(items[0].keys())
        for item in items:
            if set(item.keys()) != keys:
                raise ValueError(
                    f"The elements of the batch contain different keys. Cannot batch them ({set(item.keys())} !="
                    f" {keys})"
                )
        # input_values, input_pixels, input_ids, ...
        padded = {}
        for key in keys:
            if key in {"input_ids"}:
                # ImageGPT uses a feature extractor
                if tokenizer is None and feature_extractor is not None:
                    _padding_value = f_padding_value
                else:
                    _padding_value = t_padding_value
            elif key in {"input_values", "pixel_values", "input_features"}:
                _padding_value = f_padding_value
            elif key in {"p_mask", "special_tokens_mask"}:
                _padding_value = 1
            elif key in {"attention_mask", "token_type_ids"}:
                _padding_value = 0
            else:
                # This is likely another random key maybe even user provided
                _padding_value = 0
            padded[key] = _pad(items, key, _padding_value, padding_side)
        return padded

    return inner


def infer_framework_load_model(
    model,
    config: AutoConfig,
    model_classes: Optional[Dict[str, Tuple[type]]] = None,
    task: Optional[str] = None,
    framework: Optional[str] = None,
    **model_kwargs,
):
    """
    Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model).

    If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is
    actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to
    instantiate the model twice, this model is returned for use by the pipeline.

    If both frameworks are installed and available for `model`, PyTorch is selected.

    Args:
        model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]):
            The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from.
        config ([`AutoConfig`]):
            The config associated with the model to help using the correct class
        model_classes (dictionary `str` to `type`, *optional*):
            A mapping framework to class.
        task (`str`):
            The task defining which pipeline will be returned.
        model_kwargs:
            Additional dictionary of keyword arguments passed along to the model's `from_pretrained(...,
            **model_kwargs)` function.

    Returns:
        `Tuple`: A tuple framework, model.
    """
    if not is_tf_available() and not is_torch_available():
        raise RuntimeError(
            "At least one of TensorFlow 2.0 or PyTorch should be installed. "
            "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ "
            "To install PyTorch, read the instructions at https://pytorch.org/."
        )
    if isinstance(model, str):
        model_kwargs["_from_pipeline"] = task
        class_tuple = ()
        look_pt = is_torch_available() and framework in {"pt", None}
        look_tf = is_tf_available() and framework in {"tf", None}
        if model_classes:
            if look_pt:
                class_tuple = class_tuple + model_classes.get("pt", (AutoModel,))
            if look_tf:
                class_tuple = class_tuple + model_classes.get("tf", (TFAutoModel,))
        if config.architectures:
            classes = []
            for architecture in config.architectures:
                transformers_module = importlib.import_module("transformers")
                if look_pt:
                    _class = getattr(transformers_module, architecture, None)
                    if _class is not None:
                        classes.append(_class)
                if look_tf:
                    _class = getattr(transformers_module, f"TF{architecture}", None)
                    if _class is not None:
                        classes.append(_class)
            class_tuple = class_tuple + tuple(classes)

        if len(class_tuple) == 0:
            raise ValueError(f"Pipeline cannot infer suitable model classes from {model}")

        all_traceback = {}
        for model_class in class_tuple:
            kwargs = model_kwargs.copy()
            if framework == "pt" and model.endswith(".h5"):
                kwargs["from_tf"] = True
                logger.warning(
                    "Model might be a TensorFlow model (ending with `.h5`) but TensorFlow is not available. "
                    "Trying to load the model with PyTorch."
                )
            elif framework == "tf" and model.endswith(".bin"):
                kwargs["from_pt"] = True
                logger.warning(
                    "Model might be a PyTorch model (ending with `.bin`) but PyTorch is not available. "
                    "Trying to load the model with Tensorflow."
                )

            try:
                model = model_class.from_pretrained(model, **kwargs)
                if hasattr(model, "eval"):
                    model = model.eval()
                # Stop loading on the first successful load.
                break
            except (OSError, ValueError):
                all_traceback[model_class.__name__] = traceback.format_exc()
                continue

        if isinstance(model, str):
            error = ""
            for class_name, trace in all_traceback.items():
                error += f"while loading with {class_name}, an error is thrown:\n{trace}\n"
            raise ValueError(
                f"Could not load model {model} with any of the following classes: {class_tuple}. See the original errors:\n\n{error}\n"
            )

    if framework is None:
        framework = infer_framework(model.__class__)
    return framework, model


def infer_framework_from_model(
    model,
    model_classes: Optional[Dict[str, Tuple[type]]] = None,
    task: Optional[str] = None,
    framework: Optional[str] = None,
    **model_kwargs,
):
    """
    Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model).

    If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is
    actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to
    instantiate the model twice, this model is returned for use by the pipeline.

    If both frameworks are installed and available for `model`, PyTorch is selected.

    Args:
        model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]):
            The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from.
        model_classes (dictionary `str` to `type`, *optional*):
            A mapping framework to class.
        task (`str`):
            The task defining which pipeline will be returned.
        model_kwargs:
            Additional dictionary of keyword arguments passed along to the model's `from_pretrained(...,
            **model_kwargs)` function.

    Returns:
        `Tuple`: A tuple framework, model.
    """
    if isinstance(model, str):
        config = AutoConfig.from_pretrained(model, _from_pipeline=task, **model_kwargs)
    else:
        config = model.config
    return infer_framework_load_model(
        model, config, model_classes=model_classes, _from_pipeline=task, task=task, framework=framework, **model_kwargs
    )


def get_framework(model, revision: Optional[str] = None):
    """
    Select framework (TensorFlow or PyTorch) to use.

    Args:
        model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]):
            If both frameworks are installed, picks the one corresponding to the model passed (either a model class or
            the model name). If no specific model is provided, defaults to using PyTorch.
    """
    warnings.warn(
        "`get_framework` is deprecated and will be removed in v5, use `infer_framework_from_model` instead.",
        FutureWarning,
    )
    if not is_tf_available() and not is_torch_available():
        raise RuntimeError(
            "At least one of TensorFlow 2.0 or PyTorch should be installed. "
            "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ "
            "To install PyTorch, read the instructions at https://pytorch.org/."
        )
    if isinstance(model, str):
        if is_torch_available() and not is_tf_available():
            model = AutoModel.from_pretrained(model, revision=revision)
        elif is_tf_available() and not is_torch_available():
            model = TFAutoModel.from_pretrained(model, revision=revision)
        else:
            try:
                model = AutoModel.from_pretrained(model, revision=revision)
            except OSError:
                model = TFAutoModel.from_pretrained(model, revision=revision)

    framework = infer_framework(model.__class__)
    return framework


def get_default_model_and_revision(
    targeted_task: Dict, framework: Optional[str], task_options: Optional[Any]
) -> Union[str, Tuple[str, str]]:
    """
    Select a default model to use for a given task. Defaults to pytorch if ambiguous.

    Args:
        targeted_task (`Dict` ):
           Dictionary representing the given task, that should contain default models

        framework (`str`, None)
           "pt", "tf" or None, representing a specific framework if it was specified, or None if we don't know yet.

        task_options (`Any`, None)
           Any further value required by the task to get fully specified, for instance (SRC, TGT) languages for
           translation task.

    Returns

        `str` The model string representing the default model for this pipeline
    """
    if is_torch_available() and not is_tf_available():
        framework = "pt"
    elif is_tf_available() and not is_torch_available():
        framework = "tf"

    defaults = targeted_task["default"]
    if task_options:
        if task_options not in defaults:
            raise ValueError(f"The task does not provide any default models for options {task_options}")
        default_models = defaults[task_options]["model"]
    elif "model" in defaults:
        default_models = targeted_task["default"]["model"]
    else:
        # XXX This error message needs to be updated to be more generic if more tasks are going to become
        # parametrized
        raise ValueError('The task defaults can\'t be correctly selected. You probably meant "translation_XX_to_YY"')

    if framework is None:
        framework = "pt"

    return default_models[framework]


class PipelineException(Exception):
    """
    Raised by a [`Pipeline`] when handling __call__.

    Args:
        task (`str`): The task of the pipeline.
        model (`str`): The model used by the pipeline.
        reason (`str`): The error message to display.
    """

    def __init__(self, task: str, model: str, reason: str):
        super().__init__(reason)

        self.task = task
        self.model = model


class ArgumentHandler(ABC):
    """
    Base interface for handling arguments for each [`~pipelines.Pipeline`].
    """

    @abstractmethod
    def __call__(self, *args, **kwargs):
        raise NotImplementedError()


class PipelineDataFormat:
    """
    Base class for all the pipeline supported data format both for reading and writing. Supported data formats
    currently includes:

    - JSON
    - CSV
    - stdin/stdout (pipe)

    `PipelineDataFormat` also includes some utilities to work with multi-columns like mapping from datasets columns to
    pipelines keyword arguments through the `dataset_kwarg_1=dataset_column_1` format.

    Args:
        output_path (`str`): Where to save the outgoing data.
        input_path (`str`): Where to look for the input data.
        column (`str`): The column to read.
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the `output_path`.
    """

    SUPPORTED_FORMATS = ["json", "csv", "pipe"]

    def __init__(
        self,
        output_path: Optional[str],
        input_path: Optional[str],
        column: Optional[str],
        overwrite: bool = False,
    ):
        self.output_path = output_path
        self.input_path = input_path
        self.column = column.split(",") if column is not None else [""]
        self.is_multi_columns = len(self.column) > 1

        if self.is_multi_columns:
            self.column = [tuple(c.split("=")) if "=" in c else (c, c) for c in self.column]

        if output_path is not None and not overwrite:
            if exists(abspath(self.output_path)):
                raise OSError(f"{self.output_path} already exists on disk")

        if input_path is not None:
            if not exists(abspath(self.input_path)):
                raise OSError(f"{self.input_path} doesnt exist on disk")

    @abstractmethod
    def __iter__(self):
        raise NotImplementedError()

    @abstractmethod
    def save(self, data: Union[dict, List[dict]]):
        """
        Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`].

        Args:
            data (`dict` or list of `dict`): The data to store.
        """
        raise NotImplementedError()

    def save_binary(self, data: Union[dict, List[dict]]) -> str:
        """
        Save the provided data object as a pickle-formatted binary data on the disk.

        Args:
            data (`dict` or list of `dict`): The data to store.

        Returns:
            `str`: Path where the data has been saved.
        """
        path, _ = os.path.splitext(self.output_path)
        binary_path = os.path.extsep.join((path, "pickle"))

        with open(binary_path, "wb+") as f_output:
            pickle.dump(data, f_output)

        return binary_path

    @staticmethod
    def from_str(
        format: str,
        output_path: Optional[str],
        input_path: Optional[str],
        column: Optional[str],
        overwrite=False,
    ) -> "PipelineDataFormat":
        """
        Creates an instance of the right subclass of [`~pipelines.PipelineDataFormat`] depending on `format`.

        Args:
            format (`str`):
                The format of the desired pipeline. Acceptable values are `"json"`, `"csv"` or `"pipe"`.
            output_path (`str`, *optional*):
                Where to save the outgoing data.
            input_path (`str`, *optional*):
                Where to look for the input data.
            column (`str`, *optional*):
                The column to read.
            overwrite (`bool`, *optional*, defaults to `False`):
                Whether or not to overwrite the `output_path`.

        Returns:
            [`~pipelines.PipelineDataFormat`]: The proper data format.
        """
        if format == "json":
            return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
        elif format == "csv":
            return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
        elif format == "pipe":
            return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
        else:
            raise KeyError(f"Unknown reader {format} (Available reader are json/csv/pipe)")


class CsvPipelineDataFormat(PipelineDataFormat):
    """
    Support for pipelines using CSV data format.

    Args:
        output_path (`str`): Where to save the outgoing data.
        input_path (`str`): Where to look for the input data.
        column (`str`): The column to read.
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the `output_path`.
    """

    def __init__(
        self,
        output_path: Optional[str],
        input_path: Optional[str],
        column: Optional[str],
        overwrite=False,
    ):
        super().__init__(output_path, input_path, column, overwrite=overwrite)

    def __iter__(self):
        with open(self.input_path, "r") as f:
            reader = csv.DictReader(f)
            for row in reader:
                if self.is_multi_columns:
                    yield {k: row[c] for k, c in self.column}
                else:
                    yield row[self.column[0]]

    def save(self, data: List[dict]):
        """
        Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`].

        Args:
            data (`List[dict]`): The data to store.
        """
        with open(self.output_path, "w") as f:
            if len(data) > 0:
                writer = csv.DictWriter(f, list(data[0].keys()))
                writer.writeheader()
                writer.writerows(data)


class JsonPipelineDataFormat(PipelineDataFormat):
    """
    Support for pipelines using JSON file format.

    Args:
        output_path (`str`): Where to save the outgoing data.
        input_path (`str`): Where to look for the input data.
        column (`str`): The column to read.
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the `output_path`.
    """

    def __init__(
        self,
        output_path: Optional[str],
        input_path: Optional[str],
        column: Optional[str],
        overwrite=False,
    ):
        super().__init__(output_path, input_path, column, overwrite=overwrite)

        with open(input_path, "r") as f:
            self._entries = json.load(f)

    def __iter__(self):
        for entry in self._entries:
            if self.is_multi_columns:
                yield {k: entry[c] for k, c in self.column}
            else:
                yield entry[self.column[0]]

    def save(self, data: dict):
        """
        Save the provided data object in a json file.

        Args:
            data (`dict`): The data to store.
        """
        with open(self.output_path, "w") as f:
            json.dump(data, f)


class PipedPipelineDataFormat(PipelineDataFormat):
    """
    Read data from piped input to the python process. For multi columns data, columns should separated by \t

    If columns are provided, then the output will be a dictionary with {column_x: value_x}

    Args:
        output_path (`str`): Where to save the outgoing data.
        input_path (`str`): Where to look for the input data.
        column (`str`): The column to read.
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the `output_path`.
    """

    def __iter__(self):
        for line in sys.stdin:
            # Split for multi-columns
            if "\t" in line:
                line = line.split("\t")
                if self.column:
                    # Dictionary to map arguments
                    yield {kwargs: l for (kwargs, _), l in zip(self.column, line)}
                else:
                    yield tuple(line)

            # No dictionary to map arguments
            else:
                yield line

    def save(self, data: dict):
        """
        Print the data.

        Args:
            data (`dict`): The data to store.
        """
        print(data)

    def save_binary(self, data: Union[dict, List[dict]]) -> str:
        if self.output_path is None:
            raise KeyError(
                "When using piped input on pipeline outputting large object requires an output file path. "
                "Please provide such output path through --output argument."
            )

        return super().save_binary(data)


class _ScikitCompat(ABC):
    """
    Interface layer for the Scikit and Keras compatibility.
    """

    @abstractmethod
    def transform(self, X):
        raise NotImplementedError()

    @abstractmethod
    def predict(self, X):
        raise NotImplementedError()


PIPELINE_INIT_ARGS = r"""
    Arguments:
        model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
            The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
            [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow.
        tokenizer ([`PreTrainedTokenizer`]):
            The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
            [`PreTrainedTokenizer`].
        modelcard (`str` or [`ModelCard`], *optional*):
            Model card attributed to the model for this pipeline.
        framework (`str`, *optional*):
            The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be
            installed.

            If no framework is specified, will default to the one currently installed. If no framework is specified and
            both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is
            provided.
        task (`str`, defaults to `""`):
            A task-identifier for the pipeline.
        num_workers (`int`, *optional*, defaults to 8):
            When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of
            workers to be used.
        batch_size (`int`, *optional*, defaults to 1):
            When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of
            the batch to use, for inference this is not always beneficial, please read [Batching with
            pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) .
        args_parser ([`~pipelines.ArgumentHandler`], *optional*):
            Reference to the object in charge of parsing supplied pipeline parameters.
        device (`int`, *optional*, defaults to -1):
            Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on
            the associated CUDA device id. You can pass native `torch.device` or a `str` too.
        binary_output (`bool`, *optional*, defaults to `False`):
            Flag indicating if the output the pipeline should happen in a binary format (i.e., pickle) or as raw text.
"""

if is_torch_available():
    from transformers.pipelines.pt_utils import (
        PipelineChunkIterator,
        PipelineDataset,
        PipelineIterator,
        PipelinePackIterator,
    )


@add_end_docstrings(PIPELINE_INIT_ARGS)
class Pipeline(_ScikitCompat):
    """
    The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across
    different pipelines.

    Base class implementing pipelined operations. Pipeline workflow is defined as a sequence of the following
    operations:

        Input -> Tokenization -> Model Inference -> Post-Processing (task dependent) -> Output

    Pipeline supports running on CPU or GPU through the device argument (see below).

    Some pipeline, like for instance [`FeatureExtractionPipeline`] (`'feature-extraction'`) output large tensor object
    as nested-lists. In order to avoid dumping such large structure as textual data we provide the `binary_output`
    constructor argument. If set to `True`, the output will be stored in the pickle format.
    """

    default_input_names = None

    def __init__(
        self,
        model: Union["PreTrainedModel", "TFPreTrainedModel"],
        tokenizer: Optional[PreTrainedTokenizer] = None,
        feature_extractor: Optional[PreTrainedFeatureExtractor] = None,
        image_processor: Optional[BaseImageProcessor] = None,
        modelcard: Optional[ModelCard] = None,
        framework: Optional[str] = None,
        task: str = "",
        args_parser: ArgumentHandler = None,
        device: Union[int, "torch.device"] = None,
        torch_dtype: Optional[Union[str, "torch.dtype"]] = None,
        binary_output: bool = False,
        **kwargs,
    ):
        if framework is None:
            framework, model = infer_framework_load_model(model, config=model.config)

        self.task = task
        self.model = model
        self.tokenizer = tokenizer
        self.feature_extractor = feature_extractor
        self.image_processor = image_processor
        self.modelcard = modelcard
        self.framework = framework

        # `accelerate` device map
        hf_device_map = getattr(self.model, "hf_device_map", None)

        if hf_device_map is not None and device is not None:
            raise ValueError(
                "The model has been loaded with `accelerate` and therefore cannot be moved to a specific device. Please "
                "discard the `device` argument when creating your pipeline object."
            )

        # We shouldn't call `model.to()` for models loaded with accelerate
        if self.framework == "pt" and device is not None and not (isinstance(device, int) and device < 0):
            self.model.to(device)

        if device is None:
            if hf_device_map is not None:
                # Take the first device used by `accelerate`.
                device = next(iter(hf_device_map.values()))
            else:
                device = -1

        if is_torch_available() and self.framework == "pt":
            if isinstance(device, torch.device):
                self.device = device
            elif isinstance(device, str):
                self.device = torch.device(device)
            elif device < 0:
                self.device = torch.device("cpu")
            else:
                self.device = torch.device(f"cuda:{device}")
        else:
            self.device = device if device is not None else -1
        self.torch_dtype = torch_dtype
        self.binary_output = binary_output

        # Update config and generation_config with task specific parameters
        task_specific_params = self.model.config.task_specific_params
        if task_specific_params is not None and task in task_specific_params:
            self.model.config.update(task_specific_params.get(task))
            if self.model.can_generate():
                self.model.generation_config.update(**task_specific_params.get(task))

        self.call_count = 0
        self._batch_size = kwargs.pop("batch_size", None)
        self._num_workers = kwargs.pop("num_workers", None)
        self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs)

        if self.image_processor is None and self.feature_extractor is not None:
            if isinstance(self.feature_extractor, BaseImageProcessor):
                # Backward compatible change, if users called
                # ImageSegmentationPipeline(.., feature_extractor=MyFeatureExtractor())
                # then we should keep working
                self.image_processor = self.feature_extractor

    def save_pretrained(self, save_directory: str, safe_serialization: bool = False):
        """
        Save the pipeline's model and tokenizer.

        Args:
            save_directory (`str`):
                A path to the directory where to saved. It will be created if it doesn't exist.
            safe_serialization (`str`):
                Whether to save the model using `safetensors` or the traditional way for PyTorch or Tensorflow
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return
        os.makedirs(save_directory, exist_ok=True)

        if hasattr(self, "_registered_impl"):
            # Add info to the config
            pipeline_info = self._registered_impl.copy()
            custom_pipelines = {}
            for task, info in pipeline_info.items():
                if info["impl"] != self.__class__:
                    continue

                info = info.copy()
                module_name = info["impl"].__module__
                last_module = module_name.split(".")[-1]
                # Change classes into their names/full names
                info["impl"] = f"{last_module}.{info['impl'].__name__}"
                info["pt"] = tuple(c.__name__ for c in info["pt"])
                info["tf"] = tuple(c.__name__ for c in info["tf"])

                custom_pipelines[task] = info
            self.model.config.custom_pipelines = custom_pipelines
            # Save the pipeline custom code
            custom_object_save(self, save_directory)

        self.model.save_pretrained(save_directory, safe_serialization=safe_serialization)

        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(save_directory)

        if self.feature_extractor is not None:
            self.feature_extractor.save_pretrained(save_directory)

        if self.image_processor is not None:
            self.image_processor.save_pretrained(save_directory)

        if self.modelcard is not None:
            self.modelcard.save_pretrained(save_directory)

    def transform(self, X):
        """
        Scikit / Keras interface to transformers' pipelines. This method will forward to __call__().
        """
        return self(X)

    def predict(self, X):
        """
        Scikit / Keras interface to transformers' pipelines. This method will forward to __call__().
        """
        return self(X)

    @contextmanager
    def device_placement(self):
        """
        Context Manager allowing tensor allocation on the user-specified device in framework agnostic way.

        Returns:
            Context manager

        Examples:

        ```python
        # Explicitly ask for tensor allocation on CUDA device :0
        pipe = pipeline(..., device=0)
        with pipe.device_placement():
            # Every framework specific tensor allocation will be done on the request device
            output = pipe(...)
        ```"""
        if self.framework == "tf":
            with tf.device("/CPU:0" if self.device == -1 else f"/device:GPU:{self.device}"):
                yield
        else:
            if self.device.type == "cuda":
                with torch.cuda.device(self.device):
                    yield
            else:
                yield

    def ensure_tensor_on_device(self, **inputs):
        """
        Ensure PyTorch tensors are on the specified device.

        Args:
            inputs (keyword arguments that should be `torch.Tensor`, the rest is ignored):
                The tensors to place on `self.device`.
            Recursive on lists **only**.

        Return:
            `Dict[str, torch.Tensor]`: The same as `inputs` but on the proper device.
        """
        return self._ensure_tensor_on_device(inputs, self.device)

    def _ensure_tensor_on_device(self, inputs, device):
        if isinstance(inputs, ModelOutput):
            return ModelOutput(
                {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()}
            )
        elif isinstance(inputs, dict):
            return {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()}
        elif isinstance(inputs, UserDict):
            return UserDict({name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()})
        elif isinstance(inputs, list):
            return [self._ensure_tensor_on_device(item, device) for item in inputs]
        elif isinstance(inputs, tuple):
            return tuple([self._ensure_tensor_on_device(item, device) for item in inputs])
        elif isinstance(inputs, torch.Tensor):
            if device == torch.device("cpu") and inputs.dtype in {torch.float16, torch.bfloat16}:
                inputs = inputs.float()
            return inputs.to(device)
        else:
            return inputs

    def check_model_type(self, supported_models: Union[List[str], dict]):
        """
        Check if the model class is in supported by the pipeline.

        Args:
            supported_models (`List[str]` or `dict`):
                The list of models supported by the pipeline, or a dictionary with model class values.
        """
        if not isinstance(supported_models, list):  # Create from a model mapping
            supported_models_names = []
            for _, model_name in supported_models.items():
                # Mapping can now contain tuples of models for the same configuration.
                if isinstance(model_name, tuple):
                    supported_models_names.extend(list(model_name))
                else:
                    supported_models_names.append(model_name)
            if hasattr(supported_models, "_model_mapping"):
                for _, model in supported_models._model_mapping._extra_content.items():
                    if isinstance(model_name, tuple):
                        supported_models_names.extend([m.__name__ for m in model])
                    else:
                        supported_models_names.append(model.__name__)
            supported_models = supported_models_names
        if self.model.__class__.__name__ not in supported_models:
            logger.error(
                f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are"
                f" {supported_models}."
            )

    @abstractmethod
    def _sanitize_parameters(self, **pipeline_parameters):
        """
        _sanitize_parameters will be called with any excessive named arguments from either `__init__` or `__call__`
        methods. It should return 3 dictionnaries of the resolved parameters used by the various `preprocess`,
        `forward` and `postprocess` methods. Do not fill dictionnaries if the caller didn't specify a kwargs. This
        let's you keep defaults in function signatures, which is more "natural".

        It is not meant to be called directly, it will be automatically called and the final parameters resolved by
        `__init__` and `__call__`
        """
        raise NotImplementedError("_sanitize_parameters not implemented")

    @abstractmethod
    def preprocess(self, input_: Any, **preprocess_parameters: Dict) -> Dict[str, GenericTensor]:
        """
        Preprocess will take the `input_` of a specific pipeline and return a dictionary of everything necessary for
        `_forward` to run properly. It should contain at least one tensor, but might have arbitrary other items.
        """
        raise NotImplementedError("preprocess not implemented")

    @abstractmethod
    def _forward(self, input_tensors: Dict[str, GenericTensor], **forward_parameters: Dict) -> ModelOutput:
        """
        _forward will receive the prepared dictionary from `preprocess` and run it on the model. This method might
        involve the GPU or the CPU and should be agnostic to it. Isolating this function is the reason for `preprocess`
        and `postprocess` to exist, so that the hot path, this method generally can run as fast as possible.

        It is not meant to be called directly, `forward` is preferred. It is basically the same but contains additional
        code surrounding `_forward` making sure tensors and models are on the same device, disabling the training part
        of the code (leading to faster inference).
        """
        raise NotImplementedError("_forward not implemented")

    @abstractmethod
    def postprocess(self, model_outputs: ModelOutput, **postprocess_parameters: Dict) -> Any:
        """
        Postprocess will receive the raw outputs of the `_forward` method, generally tensors, and reformat them into
        something more friendly. Generally it will output a list or a dict or results (containing just strings and
        numbers).
        """
        raise NotImplementedError("postprocess not implemented")

    def get_inference_context(self):
        return torch.no_grad

    def forward(self, model_inputs, **forward_params):
        with self.device_placement():
            if self.framework == "tf":
                model_inputs["training"] = False
                model_outputs = self._forward(model_inputs, **forward_params)
            elif self.framework == "pt":
                inference_context = self.get_inference_context()
                with inference_context():
                    model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device)
                    model_outputs = self._forward(model_inputs, **forward_params)
                    model_outputs = self._ensure_tensor_on_device(model_outputs, device=torch.device("cpu"))
            else:
                raise ValueError(f"Framework {self.framework} is not supported")
        return model_outputs

    def get_iterator(
        self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
    ):
        if isinstance(inputs, collections.abc.Sized):
            dataset = PipelineDataset(inputs, self.preprocess, preprocess_params)
        else:
            if num_workers > 1:
                logger.warning(
                    "For iterable dataset using num_workers>1 is likely to result"
                    " in errors since everything is iterable, setting `num_workers=1`"
                    " to guarantee correctness."
                )
                num_workers = 1
            dataset = PipelineIterator(inputs, self.preprocess, preprocess_params)
        if "TOKENIZERS_PARALLELISM" not in os.environ:
            logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already")
            os.environ["TOKENIZERS_PARALLELISM"] = "false"
        # TODO hack by collating feature_extractor and image_processor
        feature_extractor = self.feature_extractor if self.feature_extractor is not None else self.image_processor
        collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, feature_extractor)
        dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn)
        model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size)
        final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params)
        return final_iterator

    def __call__(self, inputs, *args, num_workers=None, batch_size=None, **kwargs):
        if args:
            logger.warning(f"Ignoring args : {args}")

        if num_workers is None:
            if self._num_workers is None:
                num_workers = 0
            else:
                num_workers = self._num_workers
        if batch_size is None:
            if self._batch_size is None:
                batch_size = 1
            else:
                batch_size = self._batch_size

        preprocess_params, forward_params, postprocess_params = self._sanitize_parameters(**kwargs)

        # Fuse __init__ params and __call__ params without modifying the __init__ ones.
        preprocess_params = {**self._preprocess_params, **preprocess_params}
        forward_params = {**self._forward_params, **forward_params}
        postprocess_params = {**self._postprocess_params, **postprocess_params}

        self.call_count += 1
        if self.call_count > 10 and self.framework == "pt" and self.device.type == "cuda":
            warnings.warn(
                "You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a"
                " dataset",
                UserWarning,
            )

        is_dataset = Dataset is not None and isinstance(inputs, Dataset)
        is_generator = isinstance(inputs, types.GeneratorType)
        is_list = isinstance(inputs, list)

        is_iterable = is_dataset or is_generator or is_list

        # TODO make the get_iterator work also for `tf` (and `flax`).
        can_use_iterator = self.framework == "pt" and (is_dataset or is_generator or is_list)

        if is_list:
            if can_use_iterator:
                final_iterator = self.get_iterator(
                    inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params
                )
                outputs = list(final_iterator)
                return outputs
            else:
                return self.run_multi(inputs, preprocess_params, forward_params, postprocess_params)
        elif can_use_iterator:
            return self.get_iterator(
                inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params
            )
        elif is_iterable:
            return self.iterate(inputs, preprocess_params, forward_params, postprocess_params)
        elif self.framework == "pt" and isinstance(self, ChunkPipeline):
            return next(
                iter(
                    self.get_iterator(
                        [inputs], num_workers, batch_size, preprocess_params, forward_params, postprocess_params
                    )
                )
            )
        else:
            return self.run_single(inputs, preprocess_params, forward_params, postprocess_params)

    def run_multi(self, inputs, preprocess_params, forward_params, postprocess_params):
        return [self.run_single(item, preprocess_params, forward_params, postprocess_params) for item in inputs]

    def run_single(self, inputs, preprocess_params, forward_params, postprocess_params):
        model_inputs = self.preprocess(inputs, **preprocess_params)
        model_outputs = self.forward(model_inputs, **forward_params)
        outputs = self.postprocess(model_outputs, **postprocess_params)
        return outputs

    def iterate(self, inputs, preprocess_params, forward_params, postprocess_params):
        # This function should become `get_iterator` again, this is a temporary
        # easy solution.
        for input_ in inputs:
            yield self.run_single(input_, preprocess_params, forward_params, postprocess_params)


class ChunkPipeline(Pipeline):
    def run_single(self, inputs, preprocess_params, forward_params, postprocess_params):
        all_outputs = []
        for model_inputs in self.preprocess(inputs, **preprocess_params):
            model_outputs = self.forward(model_inputs, **forward_params)
            all_outputs.append(model_outputs)
        outputs = self.postprocess(all_outputs, **postprocess_params)
        return outputs

    def get_iterator(
        self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
    ):
        if "TOKENIZERS_PARALLELISM" not in os.environ:
            logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already")
            os.environ["TOKENIZERS_PARALLELISM"] = "false"
        if num_workers > 1:
            logger.warning(
                "For ChunkPipeline using num_workers>0 is likely to result in errors since everything is iterable,"
                " setting `num_workers=1` to guarantee correctness."
            )
            num_workers = 1
        dataset = PipelineChunkIterator(inputs, self.preprocess, preprocess_params)

        # TODO hack by collating feature_extractor and image_processor
        feature_extractor = self.feature_extractor if self.feature_extractor is not None else self.image_processor
        collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, feature_extractor)
        dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn)
        model_iterator = PipelinePackIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size)
        final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params)
        return final_iterator


class PipelineRegistry:
    def __init__(self, supported_tasks: Dict[str, Any], task_aliases: Dict[str, str]) -> None:
        self.supported_tasks = supported_tasks
        self.task_aliases = task_aliases

    def get_supported_tasks(self) -> List[str]:
        supported_task = list(self.supported_tasks.keys()) + list(self.task_aliases.keys())
        supported_task.sort()
        return supported_task

    def check_task(self, task: str) -> Tuple[str, Dict, Any]:
        if task in self.task_aliases:
            task = self.task_aliases[task]
        if task in self.supported_tasks:
            targeted_task = self.supported_tasks[task]
            return task, targeted_task, None

        if task.startswith("translation"):
            tokens = task.split("_")
            if len(tokens) == 4 and tokens[0] == "translation" and tokens[2] == "to":
                targeted_task = self.supported_tasks["translation"]
                task = "translation"
                return task, targeted_task, (tokens[1], tokens[3])
            raise KeyError(f"Invalid translation task {task}, use 'translation_XX_to_YY' format")

        raise KeyError(
            f"Unknown task {task}, available tasks are {self.get_supported_tasks() + ['translation_XX_to_YY']}"
        )

    def register_pipeline(
        self,
        task: str,
        pipeline_class: type,
        pt_model: Optional[Union[type, Tuple[type]]] = None,
        tf_model: Optional[Union[type, Tuple[type]]] = None,
        default: Optional[Dict] = None,
        type: Optional[str] = None,
    ) -> None:
        if task in self.supported_tasks:
            logger.warning(f"{task} is already registered. Overwriting pipeline for task {task}...")

        if pt_model is None:
            pt_model = ()
        elif not isinstance(pt_model, tuple):
            pt_model = (pt_model,)

        if tf_model is None:
            tf_model = ()
        elif not isinstance(tf_model, tuple):
            tf_model = (tf_model,)

        task_impl = {"impl": pipeline_class, "pt": pt_model, "tf": tf_model}

        if default is not None:
            if "model" not in default and ("pt" in default or "tf" in default):
                default = {"model": default}
            task_impl["default"] = default

        if type is not None:
            task_impl["type"] = type

        self.supported_tasks[task] = task_impl
        pipeline_class._registered_impl = {task: task_impl}

    def to_dict(self):
        return self.supported_tasks