File size: 8,396 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright 2023 The HuggingFace Team. All rights reserved.
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union

import numpy as np


def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
    """
    Helper function to read an audio file through ffmpeg.
    """
    ar = f"{sampling_rate}"
    ac = "1"
    format_for_conversion = "f32le"
    ffmpeg_command = [
        "ffmpeg",
        "-i",
        "pipe:0",
        "-ac",
        ac,
        "-ar",
        ar,
        "-f",
        format_for_conversion,
        "-hide_banner",
        "-loglevel",
        "quiet",
        "pipe:1",
    ]

    try:
        with subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) as ffmpeg_process:
            output_stream = ffmpeg_process.communicate(bpayload)
    except FileNotFoundError as error:
        raise ValueError("ffmpeg was not found but is required to load audio files from filename") from error
    out_bytes = output_stream[0]
    audio = np.frombuffer(out_bytes, np.float32)
    if audio.shape[0] == 0:
        raise ValueError(
            "Soundfile is either not in the correct format or is malformed. Ensure that the soundfile has "
            "a valid audio file extension (e.g. wav, flac or mp3) and is not corrupted. If reading from a remote "
            "URL, ensure that the URL is the full address to **download** the audio file."
        )
    return audio


def ffmpeg_microphone(
    sampling_rate: int,
    chunk_length_s: float,
    format_for_conversion: str = "f32le",
):
    """
    Helper function ro read raw microphone data.
    """
    ar = f"{sampling_rate}"
    ac = "1"
    if format_for_conversion == "s16le":
        size_of_sample = 2
    elif format_for_conversion == "f32le":
        size_of_sample = 4
    else:
        raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`")

    system = platform.system()
    if system == "Linux":
        format_ = "alsa"
        input_ = "default"
    elif system == "Darwin":
        format_ = "avfoundation"
        input_ = ":0"
    elif system == "Windows":
        format_ = "dshow"
        input_ = "default"

    ffmpeg_command = [
        "ffmpeg",
        "-f",
        format_,
        "-i",
        input_,
        "-ac",
        ac,
        "-ar",
        ar,
        "-f",
        format_for_conversion,
        "-fflags",
        "nobuffer",
        "-hide_banner",
        "-loglevel",
        "quiet",
        "pipe:1",
    ]
    chunk_len = int(round(sampling_rate * chunk_length_s)) * size_of_sample
    iterator = _ffmpeg_stream(ffmpeg_command, chunk_len)
    for item in iterator:
        yield item


def ffmpeg_microphone_live(
    sampling_rate: int,
    chunk_length_s: float,
    stream_chunk_s: Optional[int] = None,
    stride_length_s: Optional[Union[Tuple[float, float], float]] = None,
    format_for_conversion: str = "f32le",
):
    """
    Helper function to read audio from the microphone file through ffmpeg. This will output `partial` overlapping
    chunks starting from `stream_chunk_s` (if it is defined) until `chunk_length_s` is reached. It will make use of
    striding to avoid errors on the "sides" of the various chunks.

    Arguments:
        sampling_rate (`int`):
            The sampling_rate to use when reading the data from the microphone. Try using the model's sampling_rate to
            avoid resampling later.
        chunk_length_s (`float` or `int`):
            The length of the maximum chunk of audio to be sent returned. This includes the eventual striding.
        stream_chunk_s (`float` or `int`)
            The length of the minimal temporary audio to be returned.
        stride_length_s (`float` or `int` or `(float, float)`, *optional*, defaults to `None`)
            The length of the striding to be used. Stride is used to provide context to a model on the (left, right) of
            an audio sample but without using that part to actually make the prediction. Setting this does not change
            the length of the chunk.
        format_for_conversion (`str`, defalts to `f32le`)
            The name of the format of the audio samples to be returned by ffmpeg. The standard is `f32le`, `s16le`
            could also be used.
    Return:
        A generator yielding dictionaries of the following form

        `{"sampling_rate": int, "raw": np.array(), "partial" bool}` With optionnally a `"stride" (int, int)` key if
        `stride_length_s` is defined.

        `stride` and `raw` are all expressed in `samples`, and `partial` is a boolean saying if the current yield item
        is a whole chunk, or a partial temporary result to be later replaced by another larger chunk.


    """
    if stream_chunk_s is not None:
        chunk_s = stream_chunk_s
    else:
        chunk_s = chunk_length_s

    microphone = ffmpeg_microphone(sampling_rate, chunk_s, format_for_conversion=format_for_conversion)
    if format_for_conversion == "s16le":
        dtype = np.int16
        size_of_sample = 2
    elif format_for_conversion == "f32le":
        dtype = np.float32
        size_of_sample = 4
    else:
        raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`")

    if stride_length_s is None:
        stride_length_s = chunk_length_s / 6
    chunk_len = int(round(sampling_rate * chunk_length_s)) * size_of_sample
    if isinstance(stride_length_s, (int, float)):
        stride_length_s = [stride_length_s, stride_length_s]

    stride_left = int(round(sampling_rate * stride_length_s[0])) * size_of_sample
    stride_right = int(round(sampling_rate * stride_length_s[1])) * size_of_sample
    audio_time = datetime.datetime.now()
    delta = datetime.timedelta(seconds=chunk_s)
    for item in chunk_bytes_iter(microphone, chunk_len, stride=(stride_left, stride_right), stream=True):
        # Put everything back in numpy scale
        item["raw"] = np.frombuffer(item["raw"], dtype=dtype)
        item["stride"] = (
            item["stride"][0] // size_of_sample,
            item["stride"][1] // size_of_sample,
        )
        item["sampling_rate"] = sampling_rate
        audio_time += delta
        if datetime.datetime.now() > audio_time + 10 * delta:
            # We're late !! SKIP
            continue
        yield item


def chunk_bytes_iter(iterator, chunk_len: int, stride: Tuple[int, int], stream: bool = False):
    """
    Reads raw bytes from an iterator and does chunks of length `chunk_len`. Optionally adds `stride` to each chunks to
    get overlaps. `stream` is used to return partial results even if a full `chunk_len` is not yet available.
    """
    acc = b""
    stride_left, stride_right = stride
    if stride_left + stride_right >= chunk_len:
        raise ValueError(
            f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}"
        )
    _stride_left = 0
    for raw in iterator:
        acc += raw
        if stream and len(acc) < chunk_len:
            stride = (_stride_left, 0)
            yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
        else:
            while len(acc) >= chunk_len:
                # We are flushing the accumulator
                stride = (_stride_left, stride_right)
                item = {"raw": acc[:chunk_len], "stride": stride}
                if stream:
                    item["partial"] = False
                yield item
                _stride_left = stride_left
                acc = acc[chunk_len - stride_left - stride_right :]
    # Last chunk
    if len(acc) > stride_left:
        item = {"raw": acc, "stride": (_stride_left, 0)}
        if stream:
            item["partial"] = False
        yield item


def _ffmpeg_stream(ffmpeg_command, buflen: int):
    """
    Internal function to create the generator of data through ffmpeg
    """
    bufsize = 2**24  # 16Mo
    try:
        with subprocess.Popen(ffmpeg_command, stdout=subprocess.PIPE, bufsize=bufsize) as ffmpeg_process:
            while True:
                raw = ffmpeg_process.stdout.read(buflen)
                if raw == b"":
                    break
                yield raw
    except FileNotFoundError as error:
        raise ValueError("ffmpeg was not found but is required to stream audio files from filename") from error