File size: 8,781 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import subprocess
from typing import Union

import numpy as np
import requests

from ..utils import add_end_docstrings, is_torch_available, is_torchaudio_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline


if is_torch_available():
    from ..models.auto.modeling_auto import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES

logger = logging.get_logger(__name__)


def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
    """
    Helper function to read an audio file through ffmpeg.
    """
    ar = f"{sampling_rate}"
    ac = "1"
    format_for_conversion = "f32le"
    ffmpeg_command = [
        "ffmpeg",
        "-i",
        "pipe:0",
        "-ac",
        ac,
        "-ar",
        ar,
        "-f",
        format_for_conversion,
        "-hide_banner",
        "-loglevel",
        "quiet",
        "pipe:1",
    ]

    try:
        ffmpeg_process = subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
    except FileNotFoundError:
        raise ValueError("ffmpeg was not found but is required to load audio files from filename")
    output_stream = ffmpeg_process.communicate(bpayload)
    out_bytes = output_stream[0]

    audio = np.frombuffer(out_bytes, np.float32)
    if audio.shape[0] == 0:
        raise ValueError("Malformed soundfile")
    return audio


@add_end_docstrings(PIPELINE_INIT_ARGS)
class AudioClassificationPipeline(Pipeline):
    """
    Audio classification pipeline using any `AutoModelForAudioClassification`. This pipeline predicts the class of a
    raw waveform or an audio file. In case of an audio file, ffmpeg should be installed to support multiple audio
    formats.

    Example:

    ```python
    >>> from transformers import pipeline

    >>> classifier = pipeline(model="superb/wav2vec2-base-superb-ks")
    >>> classifier("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac")
    [{'score': 0.997, 'label': '_unknown_'}, {'score': 0.002, 'label': 'left'}, {'score': 0.0, 'label': 'yes'}, {'score': 0.0, 'label': 'down'}, {'score': 0.0, 'label': 'stop'}]
    ```

    Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)


    This pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"audio-classification"`.

    See the list of available models on
    [huggingface.co/models](https://huggingface.co/models?filter=audio-classification).
    """

    def __init__(self, *args, **kwargs):
        # Default, might be overriden by the model.config.
        kwargs["top_k"] = 5
        super().__init__(*args, **kwargs)

        if self.framework != "pt":
            raise ValueError(f"The {self.__class__} is only available in PyTorch.")

        self.check_model_type(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES)

    def __call__(
        self,
        inputs: Union[np.ndarray, bytes, str],
        **kwargs,
    ):
        """
        Classify the sequence(s) given as inputs. See the [`AutomaticSpeechRecognitionPipeline`] documentation for more
        information.

        Args:
            inputs (`np.ndarray` or `bytes` or `str` or `dict`):
                The inputs is either :
                    - `str` that is the filename of the audio file, the file will be read at the correct sampling rate
                      to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system.
                    - `bytes` it is supposed to be the content of an audio file and is interpreted by *ffmpeg* in the
                      same way.
                    - (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`)
                        Raw audio at the correct sampling rate (no further check will be done)
                    - `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this
                      pipeline do the resampling. The dict must be either be in the format `{"sampling_rate": int,
                      "raw": np.array}`, or `{"sampling_rate": int, "array": np.array}`, where the key `"raw"` or
                      `"array"` is used to denote the raw audio waveform.
            top_k (`int`, *optional*, defaults to None):
                The number of top labels that will be returned by the pipeline. If the provided number is `None` or
                higher than the number of labels available in the model configuration, it will default to the number of
                labels.

        Return:
            A list of `dict` with the following keys:

            - **label** (`str`) -- The label predicted.
            - **score** (`float`) -- The corresponding probability.
        """
        return super().__call__(inputs, **kwargs)

    def _sanitize_parameters(self, top_k=None, **kwargs):
        # No parameters on this pipeline right now
        postprocess_params = {}
        if top_k is not None:
            if top_k > self.model.config.num_labels:
                top_k = self.model.config.num_labels
            postprocess_params["top_k"] = top_k
        return {}, {}, postprocess_params

    def preprocess(self, inputs):
        if isinstance(inputs, str):
            if inputs.startswith("http://") or inputs.startswith("https://"):
                # We need to actually check for a real protocol, otherwise it's impossible to use a local file
                # like http_huggingface_co.png
                inputs = requests.get(inputs).content
            else:
                with open(inputs, "rb") as f:
                    inputs = f.read()

        if isinstance(inputs, bytes):
            inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)

        if isinstance(inputs, dict):
            # Accepting `"array"` which is the key defined in `datasets` for
            # better integration
            if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
                raise ValueError(
                    "When passing a dictionary to AudioClassificationPipeline, the dict needs to contain a "
                    '"raw" key containing the numpy array representing the audio and a "sampling_rate" key, '
                    "containing the sampling_rate associated with that array"
                )

            _inputs = inputs.pop("raw", None)
            if _inputs is None:
                # Remove path which will not be used from `datasets`.
                inputs.pop("path", None)
                _inputs = inputs.pop("array", None)
            in_sampling_rate = inputs.pop("sampling_rate")
            inputs = _inputs
            if in_sampling_rate != self.feature_extractor.sampling_rate:
                import torch

                if is_torchaudio_available():
                    from torchaudio import functional as F
                else:
                    raise ImportError(
                        "torchaudio is required to resample audio samples in AudioClassificationPipeline. "
                        "The torchaudio package can be installed through: `pip install torchaudio`."
                    )

                inputs = F.resample(
                    torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
                ).numpy()

        if not isinstance(inputs, np.ndarray):
            raise ValueError("We expect a numpy ndarray as input")
        if len(inputs.shape) != 1:
            raise ValueError("We expect a single channel audio input for AudioClassificationPipeline")

        processed = self.feature_extractor(
            inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
        )
        return processed

    def _forward(self, model_inputs):
        model_outputs = self.model(**model_inputs)
        return model_outputs

    def postprocess(self, model_outputs, top_k=5):
        probs = model_outputs.logits[0].softmax(-1)
        scores, ids = probs.topk(top_k)

        scores = scores.tolist()
        ids = ids.tolist()

        labels = [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)]

        return labels