File size: 48,251 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import json
import os
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union

from huggingface_hub import model_info
from numpy import isin

from ..configuration_utils import PretrainedConfig
from ..dynamic_module_utils import get_class_from_dynamic_module
from ..feature_extraction_utils import PreTrainedFeatureExtractor
from ..image_processing_utils import BaseImageProcessor
from ..models.auto.configuration_auto import AutoConfig
from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor
from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage
from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
from ..tokenization_utils import PreTrainedTokenizer
from ..utils import (
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    find_adapter_config_file,
    is_kenlm_available,
    is_offline_mode,
    is_peft_available,
    is_pyctcdecode_available,
    is_tf_available,
    is_torch_available,
    logging,
)
from .audio_classification import AudioClassificationPipeline
from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
from .base import (
    ArgumentHandler,
    CsvPipelineDataFormat,
    JsonPipelineDataFormat,
    PipedPipelineDataFormat,
    Pipeline,
    PipelineDataFormat,
    PipelineException,
    PipelineRegistry,
    get_default_model_and_revision,
    infer_framework_load_model,
)
from .conversational import Conversation, ConversationalPipeline
from .depth_estimation import DepthEstimationPipeline
from .document_question_answering import DocumentQuestionAnsweringPipeline
from .feature_extraction import FeatureExtractionPipeline
from .fill_mask import FillMaskPipeline
from .image_classification import ImageClassificationPipeline
from .image_segmentation import ImageSegmentationPipeline
from .image_to_image import ImageToImagePipeline
from .image_to_text import ImageToTextPipeline
from .mask_generation import MaskGenerationPipeline
from .object_detection import ObjectDetectionPipeline
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline
from .text_classification import TextClassificationPipeline
from .text_generation import TextGenerationPipeline
from .text_to_audio import TextToAudioPipeline
from .token_classification import (
    AggregationStrategy,
    NerPipeline,
    TokenClassificationArgumentHandler,
    TokenClassificationPipeline,
)
from .video_classification import VideoClassificationPipeline
from .visual_question_answering import VisualQuestionAnsweringPipeline
from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline
from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline
from .zero_shot_image_classification import ZeroShotImageClassificationPipeline
from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline


if is_tf_available():
    import tensorflow as tf

    from ..models.auto.modeling_tf_auto import (
        TFAutoModel,
        TFAutoModelForCausalLM,
        TFAutoModelForImageClassification,
        TFAutoModelForMaskedLM,
        TFAutoModelForQuestionAnswering,
        TFAutoModelForSeq2SeqLM,
        TFAutoModelForSequenceClassification,
        TFAutoModelForTableQuestionAnswering,
        TFAutoModelForTokenClassification,
        TFAutoModelForVision2Seq,
        TFAutoModelForZeroShotImageClassification,
    )

if is_torch_available():
    import torch

    from ..models.auto.modeling_auto import (
        AutoModel,
        AutoModelForAudioClassification,
        AutoModelForCausalLM,
        AutoModelForCTC,
        AutoModelForDocumentQuestionAnswering,
        AutoModelForImageClassification,
        AutoModelForImageSegmentation,
        AutoModelForMaskedLM,
        AutoModelForMaskGeneration,
        AutoModelForObjectDetection,
        AutoModelForQuestionAnswering,
        AutoModelForSemanticSegmentation,
        AutoModelForSeq2SeqLM,
        AutoModelForSequenceClassification,
        AutoModelForSpeechSeq2Seq,
        AutoModelForTableQuestionAnswering,
        AutoModelForTextToSpectrogram,
        AutoModelForTextToWaveform,
        AutoModelForTokenClassification,
        AutoModelForVideoClassification,
        AutoModelForVision2Seq,
        AutoModelForVisualQuestionAnswering,
        AutoModelForZeroShotImageClassification,
        AutoModelForZeroShotObjectDetection,
    )


if TYPE_CHECKING:
    from ..modeling_tf_utils import TFPreTrainedModel
    from ..modeling_utils import PreTrainedModel
    from ..tokenization_utils_fast import PreTrainedTokenizerFast


logger = logging.get_logger(__name__)


# Register all the supported tasks here
TASK_ALIASES = {
    "sentiment-analysis": "text-classification",
    "ner": "token-classification",
    "vqa": "visual-question-answering",
    "text-to-speech": "text-to-audio",
}
SUPPORTED_TASKS = {
    "audio-classification": {
        "impl": AudioClassificationPipeline,
        "tf": (),
        "pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
        "default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
        "type": "audio",
    },
    "automatic-speech-recognition": {
        "impl": AutomaticSpeechRecognitionPipeline,
        "tf": (),
        "pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
        "default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
        "type": "multimodal",
    },
    "text-to-audio": {
        "impl": TextToAudioPipeline,
        "tf": (),
        "pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
        "default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
        "type": "text",
    },
    "feature-extraction": {
        "impl": FeatureExtractionPipeline,
        "tf": (TFAutoModel,) if is_tf_available() else (),
        "pt": (AutoModel,) if is_torch_available() else (),
        "default": {"model": {"pt": ("distilbert-base-cased", "935ac13"), "tf": ("distilbert-base-cased", "935ac13")}},
        "type": "multimodal",
    },
    "text-classification": {
        "impl": TextClassificationPipeline,
        "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
        "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
                "tf": ("distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
            },
        },
        "type": "text",
    },
    "token-classification": {
        "impl": TokenClassificationPipeline,
        "tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
        "pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
                "tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
            },
        },
        "type": "text",
    },
    "question-answering": {
        "impl": QuestionAnsweringPipeline,
        "tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
        "pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("distilbert-base-cased-distilled-squad", "626af31"),
                "tf": ("distilbert-base-cased-distilled-squad", "626af31"),
            },
        },
        "type": "text",
    },
    "table-question-answering": {
        "impl": TableQuestionAnsweringPipeline,
        "pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
        "tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
        "default": {
            "model": {
                "pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
                "tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
            },
        },
        "type": "text",
    },
    "visual-question-answering": {
        "impl": VisualQuestionAnsweringPipeline,
        "pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (),
        "tf": (),
        "default": {
            "model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
        },
        "type": "multimodal",
    },
    "document-question-answering": {
        "impl": DocumentQuestionAnsweringPipeline,
        "pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
        "tf": (),
        "default": {
            "model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
        },
        "type": "multimodal",
    },
    "fill-mask": {
        "impl": FillMaskPipeline,
        "tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
        "pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
        "default": {"model": {"pt": ("distilroberta-base", "ec58a5b"), "tf": ("distilroberta-base", "ec58a5b")}},
        "type": "text",
    },
    "summarization": {
        "impl": SummarizationPipeline,
        "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
        "default": {"model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("t5-small", "d769bba")}},
        "type": "text",
    },
    # This task is a special case as it's parametrized by SRC, TGT languages.
    "translation": {
        "impl": TranslationPipeline,
        "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
        "default": {
            ("en", "fr"): {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}},
            ("en", "de"): {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}},
            ("en", "ro"): {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}},
        },
        "type": "text",
    },
    "text2text-generation": {
        "impl": Text2TextGenerationPipeline,
        "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
        "default": {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}},
        "type": "text",
    },
    "text-generation": {
        "impl": TextGenerationPipeline,
        "tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
        "pt": (AutoModelForCausalLM,) if is_torch_available() else (),
        "default": {"model": {"pt": ("gpt2", "6c0e608"), "tf": ("gpt2", "6c0e608")}},
        "type": "text",
    },
    "zero-shot-classification": {
        "impl": ZeroShotClassificationPipeline,
        "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
        "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
        "default": {
            "model": {"pt": ("facebook/bart-large-mnli", "c626438"), "tf": ("roberta-large-mnli", "130fb28")},
            "config": {"pt": ("facebook/bart-large-mnli", "c626438"), "tf": ("roberta-large-mnli", "130fb28")},
        },
        "type": "text",
    },
    "zero-shot-image-classification": {
        "impl": ZeroShotImageClassificationPipeline,
        "tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
        "pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("openai/clip-vit-base-patch32", "f4881ba"),
                "tf": ("openai/clip-vit-base-patch32", "f4881ba"),
            }
        },
        "type": "multimodal",
    },
    "zero-shot-audio-classification": {
        "impl": ZeroShotAudioClassificationPipeline,
        "tf": (),
        "pt": (AutoModel,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("laion/clap-htsat-fused", "973b6e5"),
            }
        },
        "type": "multimodal",
    },
    "conversational": {
        "impl": ConversationalPipeline,
        "tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (),
        "default": {
            "model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")}
        },
        "type": "text",
    },
    "image-classification": {
        "impl": ImageClassificationPipeline,
        "tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
        "pt": (AutoModelForImageClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("google/vit-base-patch16-224", "5dca96d"),
                "tf": ("google/vit-base-patch16-224", "5dca96d"),
            }
        },
        "type": "image",
    },
    "image-segmentation": {
        "impl": ImageSegmentationPipeline,
        "tf": (),
        "pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
        "default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
        "type": "multimodal",
    },
    "image-to-text": {
        "impl": ImageToTextPipeline,
        "tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
        "pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
                "tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
            }
        },
        "type": "multimodal",
    },
    "object-detection": {
        "impl": ObjectDetectionPipeline,
        "tf": (),
        "pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
        "default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
        "type": "multimodal",
    },
    "zero-shot-object-detection": {
        "impl": ZeroShotObjectDetectionPipeline,
        "tf": (),
        "pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
        "default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
        "type": "multimodal",
    },
    "depth-estimation": {
        "impl": DepthEstimationPipeline,
        "tf": (),
        "pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
        "default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
        "type": "image",
    },
    "video-classification": {
        "impl": VideoClassificationPipeline,
        "tf": (),
        "pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
        "default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
        "type": "video",
    },
    "mask-generation": {
        "impl": MaskGenerationPipeline,
        "tf": (),
        "pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
        "default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
        "type": "multimodal",
    },
    "image-to-image": {
        "impl": ImageToImagePipeline,
        "tf": (),
        "pt": (AutoModelForImageToImage,) if is_torch_available() else (),
        "default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
        "type": "image",
    },
}

NO_FEATURE_EXTRACTOR_TASKS = set()
NO_IMAGE_PROCESSOR_TASKS = set()
NO_TOKENIZER_TASKS = set()

# Those model configs are special, they are generic over their task, meaning
# any tokenizer/feature_extractor might be use for a given model so we cannot
# use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING to
# see if the model defines such objects or not.
MULTI_MODEL_CONFIGS = {"SpeechEncoderDecoderConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"}
for task, values in SUPPORTED_TASKS.items():
    if values["type"] == "text":
        NO_FEATURE_EXTRACTOR_TASKS.add(task)
        NO_IMAGE_PROCESSOR_TASKS.add(task)
    elif values["type"] in {"image", "video"}:
        NO_TOKENIZER_TASKS.add(task)
    elif values["type"] in {"audio"}:
        NO_TOKENIZER_TASKS.add(task)
        NO_IMAGE_PROCESSOR_TASKS.add(task)
    elif values["type"] != "multimodal":
        raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}")

PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES)


def get_supported_tasks() -> List[str]:
    """
    Returns a list of supported task strings.
    """
    return PIPELINE_REGISTRY.get_supported_tasks()


def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str:
    use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
    if use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
        )
        if token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        token = use_auth_token

    if is_offline_mode():
        raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode")
    try:
        info = model_info(model, token=token)
    except Exception as e:
        raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}")
    if not info.pipeline_tag:
        raise RuntimeError(
            f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically"
        )
    if getattr(info, "library_name", "transformers") != "transformers":
        raise RuntimeError(f"This model is meant to be used with {info.library_name} not with transformers")
    task = info.pipeline_tag
    return task


def check_task(task: str) -> Tuple[str, Dict, Any]:
    """
    Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and
    default models if they exist.

    Args:
        task (`str`):
            The task defining which pipeline will be returned. Currently accepted tasks are:

            - `"audio-classification"`
            - `"automatic-speech-recognition"`
            - `"conversational"`
            - `"depth-estimation"`
            - `"document-question-answering"`
            - `"feature-extraction"`
            - `"fill-mask"`
            - `"image-classification"`
            - `"image-segmentation"`
            - `"image-to-text"`
            - `"image-to-image"`
            - `"object-detection"`
            - `"question-answering"`
            - `"summarization"`
            - `"table-question-answering"`
            - `"text2text-generation"`
            - `"text-classification"` (alias `"sentiment-analysis"` available)
            - `"text-generation"`
            - `"text-to-audio"` (alias `"text-to-speech"` available)
            - `"token-classification"` (alias `"ner"` available)
            - `"translation"`
            - `"translation_xx_to_yy"`
            - `"video-classification"`
            - `"visual-question-answering"`
            - `"zero-shot-classification"`
            - `"zero-shot-image-classification"`
            - `"zero-shot-object-detection"`

    Returns:
        (normalized_task: `str`, task_defaults: `dict`, task_options: (`tuple`, None)) The normalized task name
        (removed alias and options). The actual dictionary required to initialize the pipeline and some extra task
        options for parametrized tasks like "translation_XX_to_YY"


    """
    return PIPELINE_REGISTRY.check_task(task)


def clean_custom_task(task_info):
    import transformers

    if "impl" not in task_info:
        raise RuntimeError("This model introduces a custom pipeline without specifying its implementation.")
    pt_class_names = task_info.get("pt", ())
    if isinstance(pt_class_names, str):
        pt_class_names = [pt_class_names]
    task_info["pt"] = tuple(getattr(transformers, c) for c in pt_class_names)
    tf_class_names = task_info.get("tf", ())
    if isinstance(tf_class_names, str):
        tf_class_names = [tf_class_names]
    task_info["tf"] = tuple(getattr(transformers, c) for c in tf_class_names)
    return task_info, None


def pipeline(
    task: str = None,
    model: Optional[Union[str, "PreTrainedModel", "TFPreTrainedModel"]] = None,
    config: Optional[Union[str, PretrainedConfig]] = None,
    tokenizer: Optional[Union[str, PreTrainedTokenizer, "PreTrainedTokenizerFast"]] = None,
    feature_extractor: Optional[Union[str, PreTrainedFeatureExtractor]] = None,
    image_processor: Optional[Union[str, BaseImageProcessor]] = None,
    framework: Optional[str] = None,
    revision: Optional[str] = None,
    use_fast: bool = True,
    token: Optional[Union[str, bool]] = None,
    device: Optional[Union[int, str, "torch.device"]] = None,
    device_map=None,
    torch_dtype=None,
    trust_remote_code: Optional[bool] = None,
    model_kwargs: Dict[str, Any] = None,
    pipeline_class: Optional[Any] = None,
    **kwargs,
) -> Pipeline:
    """
    Utility factory method to build a [`Pipeline`].

    Pipelines are made of:

        - A [tokenizer](tokenizer) in charge of mapping raw textual input to token.
        - A [model](model) to make predictions from the inputs.
        - Some (optional) post processing for enhancing model's output.

    Args:
        task (`str`):
            The task defining which pipeline will be returned. Currently accepted tasks are:

            - `"audio-classification"`: will return a [`AudioClassificationPipeline`].
            - `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`].
            - `"conversational"`: will return a [`ConversationalPipeline`].
            - `"depth-estimation"`: will return a [`DepthEstimationPipeline`].
            - `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`].
            - `"feature-extraction"`: will return a [`FeatureExtractionPipeline`].
            - `"fill-mask"`: will return a [`FillMaskPipeline`]:.
            - `"image-classification"`: will return a [`ImageClassificationPipeline`].
            - `"image-segmentation"`: will return a [`ImageSegmentationPipeline`].
            - `"image-to-image"`: will return a [`ImageToImagePipeline`].
            - `"image-to-text"`: will return a [`ImageToTextPipeline`].
            - `"mask-generation"`: will return a [`MaskGenerationPipeline`].
            - `"object-detection"`: will return a [`ObjectDetectionPipeline`].
            - `"question-answering"`: will return a [`QuestionAnsweringPipeline`].
            - `"summarization"`: will return a [`SummarizationPipeline`].
            - `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`].
            - `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`].
            - `"text-classification"` (alias `"sentiment-analysis"` available): will return a
              [`TextClassificationPipeline`].
            - `"text-generation"`: will return a [`TextGenerationPipeline`]:.
            - `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:.
            - `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`].
            - `"translation"`: will return a [`TranslationPipeline`].
            - `"translation_xx_to_yy"`: will return a [`TranslationPipeline`].
            - `"video-classification"`: will return a [`VideoClassificationPipeline`].
            - `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`].
            - `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`].
            - `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`].
            - `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`].
            - `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`].

        model (`str` or [`PreTrainedModel`] or [`TFPreTrainedModel`], *optional*):
            The model that will be used by the pipeline to make predictions. This can be a model identifier or an
            actual instance of a pretrained model inheriting from [`PreTrainedModel`] (for PyTorch) or
            [`TFPreTrainedModel`] (for TensorFlow).

            If not provided, the default for the `task` will be loaded.
        config (`str` or [`PretrainedConfig`], *optional*):
            The configuration that will be used by the pipeline to instantiate the model. This can be a model
            identifier or an actual pretrained model configuration inheriting from [`PretrainedConfig`].

            If not provided, the default configuration file for the requested model will be used. That means that if
            `model` is given, its default configuration will be used. However, if `model` is not supplied, this
            `task`'s default model's config is used instead.
        tokenizer (`str` or [`PreTrainedTokenizer`], *optional*):
            The tokenizer that will be used by the pipeline to encode data for the model. This can be a model
            identifier or an actual pretrained tokenizer inheriting from [`PreTrainedTokenizer`].

            If not provided, the default tokenizer for the given `model` will be loaded (if it is a string). If `model`
            is not specified or not a string, then the default tokenizer for `config` is loaded (if it is a string).
            However, if `config` is also not given or not a string, then the default tokenizer for the given `task`
            will be loaded.
        feature_extractor (`str` or [`PreTrainedFeatureExtractor`], *optional*):
            The feature extractor that will be used by the pipeline to encode data for the model. This can be a model
            identifier or an actual pretrained feature extractor inheriting from [`PreTrainedFeatureExtractor`].

            Feature extractors are used for non-NLP models, such as Speech or Vision models as well as multi-modal
            models. Multi-modal models will also require a tokenizer to be passed.

            If not provided, the default feature extractor for the given `model` will be loaded (if it is a string). If
            `model` is not specified or not a string, then the default feature extractor for `config` is loaded (if it
            is a string). However, if `config` is also not given or not a string, then the default feature extractor
            for the given `task` will be loaded.
        framework (`str`, *optional*):
            The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be
            installed.

            If no framework is specified, will default to the one currently installed. If no framework is specified and
            both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is
            provided.
        revision (`str`, *optional*, defaults to `"main"`):
            When passing a task name or a string model identifier: The specific model version to use. It can be a
            branch name, a tag name, or a commit id, since we use a git-based system for storing models and other
            artifacts on huggingface.co, so `revision` can be any identifier allowed by git.
        use_fast (`bool`, *optional*, defaults to `True`):
            Whether or not to use a Fast tokenizer if possible (a [`PreTrainedTokenizerFast`]).
        use_auth_token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `huggingface-cli login` (stored in `~/.huggingface`).
        device (`int` or `str` or `torch.device`):
            Defines the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which this
            pipeline will be allocated.
        device_map (`str` or `Dict[str, Union[int, str, torch.device]`, *optional*):
            Sent directly as `model_kwargs` (just a simpler shortcut). When `accelerate` library is present, set
            `device_map="auto"` to compute the most optimized `device_map` automatically (see
            [here](https://huggingface.co/docs/accelerate/main/en/package_reference/big_modeling#accelerate.cpu_offload)
            for more information).

            <Tip warning={true}>

            Do not use `device_map` AND `device` at the same time as they will conflict

            </Tip>

        torch_dtype (`str` or `torch.dtype`, *optional*):
            Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model
            (`torch.float16`, `torch.bfloat16`, ... or `"auto"`).
        trust_remote_code (`bool`, *optional*, defaults to `False`):
            Whether or not to allow for custom code defined on the Hub in their own modeling, configuration,
            tokenization or even pipeline files. This option should only be set to `True` for repositories you trust
            and in which you have read the code, as it will execute code present on the Hub on your local machine.
        model_kwargs (`Dict[str, Any]`, *optional*):
            Additional dictionary of keyword arguments passed along to the model's `from_pretrained(...,
            **model_kwargs)` function.
        kwargs (`Dict[str, Any]`, *optional*):
            Additional keyword arguments passed along to the specific pipeline init (see the documentation for the
            corresponding pipeline class for possible values).

    Returns:
        [`Pipeline`]: A suitable pipeline for the task.

    Examples:

    ```python
    >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer

    >>> # Sentiment analysis pipeline
    >>> analyzer = pipeline("sentiment-analysis")

    >>> # Question answering pipeline, specifying the checkpoint identifier
    >>> oracle = pipeline(
    ...     "question-answering", model="distilbert-base-cased-distilled-squad", tokenizer="bert-base-cased"
    ... )

    >>> # Named entity recognition pipeline, passing in a specific model and tokenizer
    >>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
    >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    >>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer)
    ```"""
    if model_kwargs is None:
        model_kwargs = {}
    # Make sure we only pass use_auth_token once as a kwarg (it used to be possible to pass it in model_kwargs,
    # this is to keep BC).
    use_auth_token = model_kwargs.pop("use_auth_token", None)
    if use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
        )
        if token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        token = use_auth_token

    hub_kwargs = {
        "revision": revision,
        "token": token,
        "trust_remote_code": trust_remote_code,
        "_commit_hash": None,
    }

    if task is None and model is None:
        raise RuntimeError(
            "Impossible to instantiate a pipeline without either a task or a model "
            "being specified. "
            "Please provide a task class or a model"
        )

    if model is None and tokenizer is not None:
        raise RuntimeError(
            "Impossible to instantiate a pipeline with tokenizer specified but not the model as the provided tokenizer"
            " may not be compatible with the default model. Please provide a PreTrainedModel class or a"
            " path/identifier to a pretrained model when providing tokenizer."
        )
    if model is None and feature_extractor is not None:
        raise RuntimeError(
            "Impossible to instantiate a pipeline with feature_extractor specified but not the model as the provided"
            " feature_extractor may not be compatible with the default model. Please provide a PreTrainedModel class"
            " or a path/identifier to a pretrained model when providing feature_extractor."
        )
    if isinstance(model, Path):
        model = str(model)

    # Config is the primordial information item.
    # Instantiate config if needed
    if isinstance(config, str):
        config = AutoConfig.from_pretrained(config, _from_pipeline=task, **hub_kwargs, **model_kwargs)
        hub_kwargs["_commit_hash"] = config._commit_hash
    elif config is None and isinstance(model, str):
        # Check for an adapter file in the model path if PEFT is available
        if is_peft_available():
            subfolder = hub_kwargs.get("subfolder", None)
            maybe_adapter_path = find_adapter_config_file(
                model,
                revision=revision,
                token=use_auth_token,
                subfolder=subfolder,
            )

            if maybe_adapter_path is not None:
                with open(maybe_adapter_path, "r", encoding="utf-8") as f:
                    adapter_config = json.load(f)
                    model = adapter_config["base_model_name_or_path"]

        config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs)
        hub_kwargs["_commit_hash"] = config._commit_hash

    custom_tasks = {}
    if config is not None and len(getattr(config, "custom_pipelines", {})) > 0:
        custom_tasks = config.custom_pipelines
        if task is None and trust_remote_code is not False:
            if len(custom_tasks) == 1:
                task = list(custom_tasks.keys())[0]
            else:
                raise RuntimeError(
                    "We can't infer the task automatically for this model as there are multiple tasks available. Pick "
                    f"one in {', '.join(custom_tasks.keys())}"
                )

    if task is None and model is not None:
        if not isinstance(model, str):
            raise RuntimeError(
                "Inferring the task automatically requires to check the hub with a model_id defined as a `str`."
                f"{model} is not a valid model_id."
            )
        task = get_task(model, use_auth_token)

    # Retrieve the task
    if task in custom_tasks:
        normalized_task = task
        targeted_task, task_options = clean_custom_task(custom_tasks[task])
        if pipeline_class is None:
            if not trust_remote_code:
                raise ValueError(
                    "Loading this pipeline requires you to execute the code in the pipeline file in that"
                    " repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
                    " set the option `trust_remote_code=True` to remove this error."
                )
            class_ref = targeted_task["impl"]
            pipeline_class = get_class_from_dynamic_module(
                class_ref, model, revision=revision, use_auth_token=use_auth_token
            )
    else:
        normalized_task, targeted_task, task_options = check_task(task)
        if pipeline_class is None:
            pipeline_class = targeted_task["impl"]

    # Use default model/config/tokenizer for the task if no model is provided
    if model is None:
        # At that point framework might still be undetermined
        model, default_revision = get_default_model_and_revision(targeted_task, framework, task_options)
        revision = revision if revision is not None else default_revision
        logger.warning(
            f"No model was supplied, defaulted to {model} and revision"
            f" {revision} ({HUGGINGFACE_CO_RESOLVE_ENDPOINT}/{model}).\n"
            "Using a pipeline without specifying a model name and revision in production is not recommended."
        )
        if config is None and isinstance(model, str):
            config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs)
            hub_kwargs["_commit_hash"] = config._commit_hash

    if device_map is not None:
        if "device_map" in model_kwargs:
            raise ValueError(
                'You cannot use both `pipeline(... device_map=..., model_kwargs={"device_map":...})` as those'
                " arguments might conflict, use only one.)"
            )
        if device is not None:
            logger.warning(
                "Both `device` and `device_map` are specified. `device` will override `device_map`. You"
                " will most likely encounter unexpected behavior. Please remove `device` and keep `device_map`."
            )
        model_kwargs["device_map"] = device_map
    if torch_dtype is not None:
        if "torch_dtype" in model_kwargs:
            raise ValueError(
                'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those'
                " arguments might conflict, use only one.)"
            )
        model_kwargs["torch_dtype"] = torch_dtype

    model_name = model if isinstance(model, str) else None

    # Load the correct model if possible
    # Infer the framework from the model if not already defined
    if isinstance(model, str) or framework is None:
        model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]}
        framework, model = infer_framework_load_model(
            model,
            model_classes=model_classes,
            config=config,
            framework=framework,
            task=task,
            **hub_kwargs,
            **model_kwargs,
        )

    model_config = model.config
    hub_kwargs["_commit_hash"] = model.config._commit_hash
    load_tokenizer = type(model_config) in TOKENIZER_MAPPING or model_config.tokenizer_class is not None
    load_feature_extractor = type(model_config) in FEATURE_EXTRACTOR_MAPPING or feature_extractor is not None
    load_image_processor = type(model_config) in IMAGE_PROCESSOR_MAPPING or image_processor is not None

    # If `model` (instance of `PretrainedModel` instead of `str`) is passed (and/or same for config), while
    # `image_processor` or `feature_extractor` is `None`, the loading will fail. This happens particularly for some
    # vision tasks when calling `pipeline()` with `model` and only one of the `image_processor` and `feature_extractor`.
    # TODO: we need to make `NO_IMAGE_PROCESSOR_TASKS` and `NO_FEATURE_EXTRACTOR_TASKS` more robust to avoid such issue.
    # This block is only temporarily to make CI green.
    if load_image_processor and load_feature_extractor:
        load_feature_extractor = False

    if (
        tokenizer is None
        and not load_tokenizer
        and normalized_task not in NO_TOKENIZER_TASKS
        # Using class name to avoid importing the real class.
        and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS
    ):
        # This is a special category of models, that are fusions of multiple models
        # so the model_config might not define a tokenizer, but it seems to be
        # necessary for the task, so we're force-trying to load it.
        load_tokenizer = True
    if (
        image_processor is None
        and not load_image_processor
        and normalized_task not in NO_IMAGE_PROCESSOR_TASKS
        # Using class name to avoid importing the real class.
        and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS
        and normalized_task != "automatic-speech-recognition"
    ):
        # This is a special category of models, that are fusions of multiple models
        # so the model_config might not define a tokenizer, but it seems to be
        # necessary for the task, so we're force-trying to load it.
        load_image_processor = True
    if (
        feature_extractor is None
        and not load_feature_extractor
        and normalized_task not in NO_FEATURE_EXTRACTOR_TASKS
        # Using class name to avoid importing the real class.
        and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS
    ):
        # This is a special category of models, that are fusions of multiple models
        # so the model_config might not define a tokenizer, but it seems to be
        # necessary for the task, so we're force-trying to load it.
        load_feature_extractor = True

    if task in NO_TOKENIZER_TASKS:
        # These will never require a tokenizer.
        # the model on the other hand might have a tokenizer, but
        # the files could be missing from the hub, instead of failing
        # on such repos, we just force to not load it.
        load_tokenizer = False

    if task in NO_FEATURE_EXTRACTOR_TASKS:
        load_feature_extractor = False
    if task in NO_IMAGE_PROCESSOR_TASKS:
        load_image_processor = False

    if load_tokenizer:
        # Try to infer tokenizer from model or config name (if provided as str)
        if tokenizer is None:
            if isinstance(model_name, str):
                tokenizer = model_name
            elif isinstance(config, str):
                tokenizer = config
            else:
                # Impossible to guess what is the right tokenizer here
                raise Exception(
                    "Impossible to guess which tokenizer to use. "
                    "Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer."
                )

        # Instantiate tokenizer if needed
        if isinstance(tokenizer, (str, tuple)):
            if isinstance(tokenizer, tuple):
                # For tuple we have (tokenizer name, {kwargs})
                use_fast = tokenizer[1].pop("use_fast", use_fast)
                tokenizer_identifier = tokenizer[0]
                tokenizer_kwargs = tokenizer[1]
            else:
                tokenizer_identifier = tokenizer
                tokenizer_kwargs = model_kwargs.copy()
                tokenizer_kwargs.pop("torch_dtype", None)

            tokenizer = AutoTokenizer.from_pretrained(
                tokenizer_identifier, use_fast=use_fast, _from_pipeline=task, **hub_kwargs, **tokenizer_kwargs
            )

    if load_image_processor:
        # Try to infer image processor from model or config name (if provided as str)
        if image_processor is None:
            if isinstance(model_name, str):
                image_processor = model_name
            elif isinstance(config, str):
                image_processor = config
            # Backward compatibility, as `feature_extractor` used to be the name
            # for `ImageProcessor`.
            elif feature_extractor is not None and isinstance(feature_extractor, BaseImageProcessor):
                image_processor = feature_extractor
            else:
                # Impossible to guess what is the right image_processor here
                raise Exception(
                    "Impossible to guess which image processor to use. "
                    "Please provide a PreTrainedImageProcessor class or a path/identifier "
                    "to a pretrained image processor."
                )

        # Instantiate image_processor if needed
        if isinstance(image_processor, (str, tuple)):
            image_processor = AutoImageProcessor.from_pretrained(
                image_processor, _from_pipeline=task, **hub_kwargs, **model_kwargs
            )

    if load_feature_extractor:
        # Try to infer feature extractor from model or config name (if provided as str)
        if feature_extractor is None:
            if isinstance(model_name, str):
                feature_extractor = model_name
            elif isinstance(config, str):
                feature_extractor = config
            else:
                # Impossible to guess what is the right feature_extractor here
                raise Exception(
                    "Impossible to guess which feature extractor to use. "
                    "Please provide a PreTrainedFeatureExtractor class or a path/identifier "
                    "to a pretrained feature extractor."
                )

        # Instantiate feature_extractor if needed
        if isinstance(feature_extractor, (str, tuple)):
            feature_extractor = AutoFeatureExtractor.from_pretrained(
                feature_extractor, _from_pipeline=task, **hub_kwargs, **model_kwargs
            )

            if (
                feature_extractor._processor_class
                and feature_extractor._processor_class.endswith("WithLM")
                and isinstance(model_name, str)
            ):
                try:
                    import kenlm  # to trigger `ImportError` if not installed
                    from pyctcdecode import BeamSearchDecoderCTC

                    if os.path.isdir(model_name) or os.path.isfile(model_name):
                        decoder = BeamSearchDecoderCTC.load_from_dir(model_name)
                    else:
                        language_model_glob = os.path.join(
                            BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*"
                        )
                        alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME
                        allow_patterns = [language_model_glob, alphabet_filename]
                        decoder = BeamSearchDecoderCTC.load_from_hf_hub(model_name, allow_patterns=allow_patterns)

                    kwargs["decoder"] = decoder
                except ImportError as e:
                    logger.warning(f"Could not load the `decoder` for {model_name}. Defaulting to raw CTC. Error: {e}")
                    if not is_kenlm_available():
                        logger.warning("Try to install `kenlm`: `pip install kenlm")

                    if not is_pyctcdecode_available():
                        logger.warning("Try to install `pyctcdecode`: `pip install pyctcdecode")

    if task == "translation" and model.config.task_specific_params:
        for key in model.config.task_specific_params:
            if key.startswith("translation"):
                task = key
                warnings.warn(
                    f'"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{task}"',
                    UserWarning,
                )
                break

    if tokenizer is not None:
        kwargs["tokenizer"] = tokenizer

    if feature_extractor is not None:
        kwargs["feature_extractor"] = feature_extractor

    if torch_dtype is not None:
        kwargs["torch_dtype"] = torch_dtype

    if image_processor is not None:
        kwargs["image_processor"] = image_processor

    if device is not None:
        kwargs["device"] = device

    return pipeline_class(model=model, framework=framework, task=task, **kwargs)