File size: 33,797 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch M-CTC-T model."""


import math
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from ....activations import ACT2FN
from ....file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ....integrations.deepspeed import is_deepspeed_zero3_enabled
from ....modeling_outputs import BaseModelOutput, CausalLMOutput
from ....modeling_utils import (
    PreTrainedModel,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
from ....utils import logging
from .configuration_mctct import MCTCTConfig


logger = logging.get_logger(__name__)

_HIDDEN_STATES_START_POSITION = 1

_CONFIG_FOR_DOC = "MCTCTConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "speechbrain/m-ctc-t-large"
_EXPECTED_OUTPUT_SHAPE = [1, 195, 1536]

# CTC docstring
_CTC_EXPECTED_OUTPUT = '"Mr. Quilter is the apostle of the middle classes, and we\'re glad to welcome his gospel."'
_CTC_EXPECTED_LOSS = 1885.65


MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "speechbrain/m-ctc-t-large",
    # See all M-CTC-T models at https://huggingface.co/models?filter=mctct
]


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)


class MCTCTConv1dSubsampler(nn.Module):
    """
    Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation
    via gated linear units (https://arxiv.org/abs/1911.08460)
    """

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.glu_dim = config.conv_glu_dim

        self.dropout = nn.Dropout(config.conv_dropout)

        self.num_layers = config.num_conv_layers
        self.in_channels = config.input_feat_per_channel * config.input_channels

        if self.num_layers > 1:
            if config.conv_channels is None:
                raise ValueError(
                    "Need to specify `conv_channels` configuration in `MCTCTConfig` to use multiple convolution"
                    " layers."
                )

            self.mid_channels = config.conv_channels
        else:
            self.mid_channels = None

        self.out_channels = config.hidden_size * 2  # considering GLU halving
        self.kernel_size = config.conv_kernel
        self.stride = config.conv_stride

        # NOTE: MCTCT by construction only uses one convolution kernel. I've made this flexible to allow for
        # multiple layers of convolutions, but not sure if this model definition should just restrict it
        # to one layer. This becomes especially relevant when considering the padding like line 1 of forward().
        self.conv_layers = nn.ModuleList(
            nn.Conv1d(
                self.in_channels if i == 0 else self.mid_channels[i],
                self.mid_channels[i] if i < self.num_layers - 1 else self.out_channels,
                kernel_size=k,
                stride=self.stride[i],
                padding="valid",
            )
            for i, k in enumerate(self.kernel_size)
        )

    def forward(self, input_features):
        # NOTE: in reference to the NOTE in __init__, right now it just calculates padding as if
        # there will be just one conv layer.
        padding = sum([size // 2 for size in self.kernel_size])  # (7, 7) -> (3, 3)

        input_features = torch.nn.functional.pad(input_features, (0, 0, padding, padding), "constant", 0)
        hidden_states = input_features.transpose(1, 2).contiguous()  # -> Batch x Frame x Time
        for conv in self.conv_layers:
            hidden_states = conv(hidden_states)
            hidden_states = nn.functional.glu(hidden_states, dim=self.glu_dim)
            hidden_states = self.dropout(hidden_states)

        hidden_states = hidden_states.transpose(1, 2).contiguous()  # -> Batch x Time x Frame
        return hidden_states


class MCTCTEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        # self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.LayerNorm = MCTCTLayerNorm()
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
        )
        self.register_buffer(
            "token_type_ids",
            torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
            persistent=False,
        )

    def forward(
        self, input_features=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
    ):
        input_shape = input_features.size() if input_features is not None else inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]

        # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
        # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
        # issue #5664
        if token_type_ids is None:
            if hasattr(self, "token_type_ids"):
                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_features)

        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class MCTCTSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = config.attention_head_dim
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
        self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
        self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

        self.max_position_embeddings = config.max_position_embeddings
        self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)

        self.is_decoder = config.is_decoder

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def reshape_fortran(self, x, shape):
        if len(x.shape) > 0:
            x = x.permute(*reversed(range(len(x.shape))))
        return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape))))

    def relative_position_embedding_rotate(self, scores):
        # NOTE: should re-evaluate whether this re-implementation was truly necessary
        # or the reason why my complete re-haul worked was due to some other part
        # of the code. Adding this and the reshape fortrain code seems very undesirable.
        scores = scores.permute(0, 2, 3, 1)  # e.g. [10, 1839, 14, 4]

        batch, hidden_state, seq_len, heads = scores.shape

        # e.g. [10, 1853, 14, 4]
        scores = torch.cat((scores, torch.zeros((batch, seq_len, seq_len, heads), device=scores.device)), dim=1)

        # e.g. [10, 25942, 1, 4]
        scores = self.reshape_fortran(scores, [batch, (hidden_state + seq_len) * seq_len, 1, heads])

        # e.g. [10, 25928, 1, 4]
        scores = scores[:, : (seq_len + hidden_state - 1) * seq_len]

        # e.g. [10, 1852, 14, 4]
        scores = self.reshape_fortran(scores, [batch, hidden_state + seq_len - 1, seq_len, heads])

        halfpoint = hidden_state // 2
        scores = scores[:, halfpoint : halfpoint + seq_len].transpose(1, 2)  # e.g. [10, 14, 14, 4]

        return scores.permute(0, 3, 1, 2)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)
        mixed_query_layer = mixed_query_layer / math.sqrt(self.attention_head_size)

        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))

        query_layer = self.transpose_for_scores(mixed_query_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        # relative key position embeddings
        positional_embedding = self.distance_embedding.weight
        relative_position_scores = torch.einsum("lh, bche -> bcle", positional_embedding, query_layer.transpose(2, 3))

        relative_position_scores = self.relative_position_embedding_rotate(relative_position_scores)
        attention_scores = attention_scores + relative_position_scores

        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in MCTCTModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).flatten(start_dim=-2)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


class MCTCTLayerNorm(nn.Module):
    def __init__(self):
        super().__init__()
        self.singleton_weight = nn.Parameter(torch.ones(1))
        self.singleton_bias = nn.Parameter(torch.zeros(1))

    def forward(self, hidden_states):
        return (hidden_states * self.singleton_weight) + self.singleton_bias


class MCTCTSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class MCTCTAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = MCTCTSelfAttention(config)
        self.output = MCTCTSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them

        return outputs


class MCTCTIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class MCTCTOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class MCTCTLayer(nn.Module):
    def __init__(self, config: MCTCTConfig):
        super().__init__()

        self.seq_len_dim = 1
        self.chunk_size_feed_forward = config.chunk_size_feed_forward

        self.intermediate = MCTCTIntermediate(config)
        self.attention = MCTCTAttention(config)
        self.is_decoder = config.is_decoder
        self.output = MCTCTOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
    ):
        self_attention_outputs = self.attention(
            hidden_states, attention_mask, head_mask, output_attentions=output_attentions
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )

        outputs = (layer_output,) + outputs

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class MCTCTPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = MCTCTConfig
    base_model_prefix = "mctct"
    main_input_name = "input_features"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, MCTCTLayerNorm):
            module.singleton_weight.data.fill_(1.0)
            module.singleton_bias.data.zero_()
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()

    def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
        """
        Computes the output length of the convolutional layers
        """
        dilation = 1
        for _, kernel_sz, stride in zip(
            range(self.config.num_conv_layers), self.config.conv_kernel, self.config.conv_stride
        ):
            padding = kernel_sz // 2
            input_lengths = input_lengths + 2 * padding - dilation * (kernel_sz - 1) - 1
            input_lengths = torch.div(input_lengths, stride, rounding_mode="trunc") + 1

        return input_lengths

    def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask):
        # generate creates 3D attention mask, because of the shape of input_features
        # convert it to 2D if thats the case
        if len(attention_mask.shape) > 2:
            attention_mask = attention_mask[:, :, -1]

        # subsampled_lengths = attention_mask.sum(-1)
        subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1))
        bsz = attention_mask.size()[0]
        attention_mask = torch.zeros(
            (bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
        )

        # these two operations makes sure that all values
        # before the output lengths indices are attended to
        attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1
        attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long()
        return attention_mask

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (MCTCTEncoder)):
            module.gradient_checkpointing = value


MCTCT_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`MCTCTConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

MCTCT_INPUTS_DOCSTRING = r"""
    Args:
        input_features (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`Wav2Vec2CTCTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""


class MCTCTEncoder(MCTCTPreTrainedModel):
    def __init__(self, config: MCTCTConfig):
        super().__init__(config)
        self.hidden_dropout_prob = config.hidden_dropout_prob

        self.layer_norm = MCTCTLayerNorm()
        self.conv = MCTCTConv1dSubsampler(config)
        self.layers = nn.ModuleList([MCTCTLayer(config) for _ in range(config.num_hidden_layers)])

        self.gradient_checkpointing = False

    def forward(
        self,
        input_features: torch.Tensor,
        attention_mask: torch.Tensor,
        head_mask: torch.Tensor,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ) -> Union[Tuple, BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        input_features = self.layer_norm(input_features)

        inputs_embeds = self.conv(input_features)

        # subsample attention mask if necessary
        if attention_mask is not None:
            attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask)

        hidden_states = nn.functional.dropout(inputs_embeds, p=self.hidden_dropout_prob, training=self.training)

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            if head_mask.size()[0] != len(self.layers):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, "
                    f"but it is for {head_mask.size()[0]}."
                )

        deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)

            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = torch.rand([])

            skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
            if not skip_the_layer or deepspeed_zero3_is_enabled:
                # under deepspeed zero3 all gpus must run in sync
                if self.gradient_checkpointing and self.training:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states=hidden_states,
                        attention_mask=attention_mask,
                        output_attentions=output_attentions,
                    )

                hidden_states = layer_outputs[0]

            if skip_the_layer:
                layer_outputs = (None, None)

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


@add_start_docstrings(
    "The bare M-CTC-T Model transformer outputting raw hidden-states without any specific head on top.",
    MCTCT_START_DOCSTRING,
)
class MCTCTModel(MCTCTPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.encoder = MCTCTEncoder(config)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutput,
        config_class=_CONFIG_FOR_DOC,
        modality="audio",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def forward(
        self,
        input_features: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_features is None:
            raise ValueError("You have to specify input_features.")

        encoder_outputs = self.encoder(
            input_features,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]

        if not return_dict:
            return (sequence_output,) + encoder_outputs[1:]

        return BaseModelOutput(
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@add_start_docstrings(
    """MCTCT Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
    MCTCT_START_DOCSTRING,
)
class MCTCTForCTC(MCTCTPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.mctct = MCTCTModel(config)

        if config.vocab_size is None:
            raise ValueError(
                f"You are trying to instantiate {self.__class__} with a configuration that "
                "does not define the vocabulary size of the language model head. Please "
                "instantiate the model as follows: `MCTCTForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
                "or define `vocab_size` of your model's configuration."
            )
        output_hidden_size = config.hidden_size

        self.ctc_head = nn.Linear(output_hidden_size, config.vocab_size)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_CTC_EXPECTED_OUTPUT,
        expected_loss=_CTC_EXPECTED_LOSS,
    )
    def forward(
        self,
        input_features: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
            Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
            the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
            All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
            config.vocab_size - 1]`.
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        outputs = self.mctct(
            input_features,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]

        logits = self.ctc_head(hidden_states)

        loss = None
        if labels is not None:
            if labels.max() >= self.config.vocab_size:
                raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")

            # retrieve loss input_lengths from attention_mask
            attention_mask = (
                attention_mask
                if attention_mask is not None
                else torch.ones(input_features.shape[:-1], dtype=torch.long)
            )
            input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
            # assuming that padded tokens are filled with -100
            # when not being attended to
            labels_mask = labels >= 0
            target_lengths = labels_mask.sum(-1)
            flattened_targets = labels.masked_select(labels_mask)

            # ctc_loss doesn't support fp16
            log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)

            with torch.backends.cudnn.flags(enabled=False):
                loss = nn.functional.ctc_loss(
                    log_probs,
                    flattened_targets,
                    input_lengths,
                    target_lengths,
                    blank=self.config.pad_token_id,
                    reduction=self.config.ctc_loss_reduction,
                    zero_infinity=self.config.ctc_zero_infinity,
                )

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )