File size: 14,601 Bytes
4c65bff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BARK model generation configuration"""
import copy
from typing import Dict
from ...generation.configuration_utils import GenerationConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class BarkSemanticGenerationConfig(GenerationConfig):
model_type = "semantic"
def __init__(
self,
eos_token_id=10_000,
renormalize_logits=True,
max_new_tokens=768,
output_scores=False,
return_dict_in_generate=False,
output_hidden_states=False,
output_attentions=False,
temperature=1.0,
do_sample=False,
text_encoding_offset=10_048,
text_pad_token=129_595,
semantic_infer_token=129_599,
semantic_vocab_size=10_000,
max_input_semantic_length=256,
semantic_rate_hz=49.9,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkSemanticModel`].
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
eos_token_id (`int`, *optional*, defaults to 10_000):
The id of the *end-of-sequence* token.
renormalize_logits (`bool`, *optional*, defaults to `True`):
Whether to renormalize the logits after applying all the logits processors or warpers (including the
custom ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the
score logits are normalized but some logit processors or warpers break the normalization.
max_new_tokens (`int`, *optional*, defaults to 768):
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
temperature (`float`, *optional*, defaults to 1.0):
The value used to modulate the next token probabilities.
do_sample (`bool`, *optional*, defaults to `False`):
Whether or not to use sampling ; use greedy decoding otherwise.
text_encoding_offset (`int`, *optional*, defaults to 10_048):
Text encoding offset.
text_pad_token (`int`, *optional*, defaults to 129_595):
Text pad token.
semantic_infer_token (`int`, *optional*, defaults to 129_599):
Semantic infer token.
semantic_vocab_size (`int`, *optional*, defaults to 10_000):
Semantic vocab size.
max_input_semantic_length (`int`, *optional*, defaults to 256):
Max length of semantic input vector.
semantic_rate_hz (`float`, *optional*, defaults to 49.9):
Semantic rate in Hertz.
"""
super().__init__(
temperature=temperature,
do_sample=do_sample,
eos_token_id=eos_token_id,
renormalize_logits=renormalize_logits,
max_new_tokens=max_new_tokens,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
**kwargs,
)
self.text_encoding_offset = text_encoding_offset
self.text_pad_token = text_pad_token
self.semantic_pad_token = eos_token_id
self.semantic_infer_token = semantic_infer_token
self.semantic_vocab_size = semantic_vocab_size
self.max_input_semantic_length = max_input_semantic_length
self.semantic_rate_hz = semantic_rate_hz
class BarkCoarseGenerationConfig(GenerationConfig):
model_type = "coarse_acoustics"
def __init__(
self,
renormalize_logits=True,
output_scores=False,
return_dict_in_generate=False,
output_hidden_states=False,
output_attentions=False,
temperature=1.0,
do_sample=False,
coarse_semantic_pad_token=12_048,
coarse_rate_hz=75,
n_coarse_codebooks=2,
coarse_infer_token=12_050,
max_coarse_input_length=256,
max_coarse_history: int = 630,
sliding_window_len: int = 60,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkCoarseModel`].
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
renormalize_logits (`bool`, *optional*, defaults to `True`):
Whether to renormalize the logits after applying all the logits processors or warpers (including the
custom ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the
score logits are normalized but some logit processors or warpers break the normalization.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
temperature (`float`, *optional*, defaults to 1.0):
The value used to modulate the next token probabilities.
do_sample (`bool`, *optional*, defaults to `False`):
Whether or not to use sampling ; use greedy decoding otherwise.
coarse_semantic_pad_token (`int`, *optional*, defaults to 12_048):
Coarse semantic pad token.
coarse_rate_hz (`int`, *optional*, defaults to 75):
Coarse rate in Hertz.
n_coarse_codebooks (`int`, *optional*, defaults to 2):
Number of coarse codebooks.
coarse_infer_token (`int`, *optional*, defaults to 12_050):
Coarse infer token.
max_coarse_input_length (`int`, *optional*, defaults to 256):
Max length of input coarse vector.
max_coarse_history (`int`, *optional*, defaults to 630):
Max length of the output of the coarse acoustics model used in the fine generation step.
sliding_window_len (`int`, *optional*, defaults to 60):
The coarse generation step uses a sliding window to generate raw audio.
"""
super().__init__(
temperature=temperature,
do_sample=do_sample,
renormalize_logits=renormalize_logits,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
**kwargs,
)
self.coarse_semantic_pad_token = coarse_semantic_pad_token
self.coarse_rate_hz = coarse_rate_hz
self.n_coarse_codebooks = n_coarse_codebooks
self.coarse_infer_token = coarse_infer_token
self.max_coarse_input_length = max_coarse_input_length
self.max_coarse_history = max_coarse_history
self.sliding_window_len = sliding_window_len
class BarkFineGenerationConfig(GenerationConfig):
model_type = "fine_acoustics"
def __init__(
self,
temperature=1.0,
max_fine_history_length=512,
max_fine_input_length=1024,
n_fine_codebooks=8,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkFineModel`].
[`BarkFineModel`] is an autoencoder model, so should not usually be used for generation. However, under the
hood, it uses `temperature` when used by [`BarkModel`]
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
temperature (`float`, *optional*):
The value used to modulate the next token probabilities.
max_fine_history_length (`int`, *optional*, defaults to 512):
Max length of the fine history vector.
max_fine_input_length (`int`, *optional*, defaults to 1024):
Max length of fine input vector.
n_fine_codebooks (`int`, *optional*, defaults to 8):
Number of codebooks used.
"""
super().__init__(temperature=temperature)
self.max_fine_history_length = max_fine_history_length
self.max_fine_input_length = max_fine_input_length
self.n_fine_codebooks = n_fine_codebooks
def validate(self, **kwargs):
"""
Overrides GenerationConfig.validate because BarkFineGenerationConfig don't use any parameters outside
temperature.
"""
pass
class BarkGenerationConfig(GenerationConfig):
model_type = "bark"
is_composition = True
# TODO (joao): nested from_dict
def __init__(
self,
semantic_config: Dict = None,
coarse_acoustics_config: Dict = None,
fine_acoustics_config: Dict = None,
sample_rate=24_000,
codebook_size=1024,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkModel`].
The [`BarkModel`] does not have a `generate` method, but uses this class to generate speeches with a nested
[`BarkGenerationConfig`] which uses [`BarkSemanticGenerationConfig`], [`BarkCoarseGenerationConfig`],
[`BarkFineGenerationConfig`].
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
semantic_config (`Dict`, *optional*):
Semantic generation configuration.
coarse_acoustics_config (`Dict`, *optional*):
Coarse generation configuration.
fine_acoustics_config (`Dict`, *optional*):
Fine generation configuration.
sample_rate (`int`, *optional*, defaults to 24_000):
Sample rate.
codebook_size (`int`, *optional*, defaults to 1024):
Vector length for each codebook.
"""
if semantic_config is None:
semantic_config = {}
logger.info("semantic_config is None. initializing the semantic model with default values.")
if coarse_acoustics_config is None:
coarse_acoustics_config = {}
logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.")
if fine_acoustics_config is None:
fine_acoustics_config = {}
logger.info("fine_acoustics_config is None. initializing the fine model with default values.")
self.semantic_config = BarkSemanticGenerationConfig(**semantic_config)
self.coarse_acoustics_config = BarkCoarseGenerationConfig(**coarse_acoustics_config)
self.fine_acoustics_config = BarkFineGenerationConfig(**fine_acoustics_config)
self.sample_rate = sample_rate
self.codebook_size = codebook_size
@classmethod
def from_sub_model_configs(
cls,
semantic_config: BarkSemanticGenerationConfig,
coarse_acoustics_config: BarkCoarseGenerationConfig,
fine_acoustics_config: BarkFineGenerationConfig,
**kwargs,
):
r"""
Instantiate a [`BarkGenerationConfig`] (or a derived class) from bark sub-models generation configuration.
Returns:
[`BarkGenerationConfig`]: An instance of a configuration object
"""
return cls(
semantic_config=semantic_config.to_dict(),
coarse_acoustics_config=coarse_acoustics_config.to_dict(),
fine_acoustics_config=fine_acoustics_config.to_dict(),
**kwargs,
)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["semantic_config"] = self.semantic_config.to_dict()
output["coarse_acoustics_config"] = self.coarse_acoustics_config.to_dict()
output["fine_acoustics_config"] = self.fine_acoustics_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
|