File size: 2,212 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING

from ...utils import (
    OptionalDependencyNotAvailable,
    _LazyModule,
    is_torch_available,
)


_import_structure = {
    "configuration_bark": [
        "BARK_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BarkCoarseConfig",
        "BarkConfig",
        "BarkFineConfig",
        "BarkSemanticConfig",
    ],
    "processing_bark": ["BarkProcessor"],
}

try:
    if not is_torch_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_bark"] = [
        "BARK_PRETRAINED_MODEL_ARCHIVE_LIST",
        "BarkFineModel",
        "BarkSemanticModel",
        "BarkCoarseModel",
        "BarkModel",
        "BarkPreTrainedModel",
        "BarkCausalModel",
    ]

if TYPE_CHECKING:
    from .configuration_bark import (
        BARK_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BarkCoarseConfig,
        BarkConfig,
        BarkFineConfig,
        BarkSemanticConfig,
    )
    from .processing_bark import BarkProcessor

    try:
        if not is_torch_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_bark import (
            BARK_PRETRAINED_MODEL_ARCHIVE_LIST,
            BarkCausalModel,
            BarkCoarseModel,
            BarkFineModel,
            BarkModel,
            BarkPreTrainedModel,
            BarkSemanticModel,
        )

else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)