File size: 19,482 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" AutoFeatureExtractor class."""
import importlib
import json
import os
import warnings
from collections import OrderedDict
from typing import Dict, Optional, Union

# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
    CONFIG_MAPPING_NAMES,
    AutoConfig,
    model_type_to_module_name,
    replace_list_option_in_docstrings,
)


logger = logging.get_logger(__name__)

FEATURE_EXTRACTOR_MAPPING_NAMES = OrderedDict(
    [
        ("audio-spectrogram-transformer", "ASTFeatureExtractor"),
        ("beit", "BeitFeatureExtractor"),
        ("chinese_clip", "ChineseCLIPFeatureExtractor"),
        ("clap", "ClapFeatureExtractor"),
        ("clip", "CLIPFeatureExtractor"),
        ("clipseg", "ViTFeatureExtractor"),
        ("conditional_detr", "ConditionalDetrFeatureExtractor"),
        ("convnext", "ConvNextFeatureExtractor"),
        ("cvt", "ConvNextFeatureExtractor"),
        ("data2vec-audio", "Wav2Vec2FeatureExtractor"),
        ("data2vec-vision", "BeitFeatureExtractor"),
        ("deformable_detr", "DeformableDetrFeatureExtractor"),
        ("deit", "DeiTFeatureExtractor"),
        ("detr", "DetrFeatureExtractor"),
        ("dinat", "ViTFeatureExtractor"),
        ("donut-swin", "DonutFeatureExtractor"),
        ("dpt", "DPTFeatureExtractor"),
        ("encodec", "EncodecFeatureExtractor"),
        ("flava", "FlavaFeatureExtractor"),
        ("glpn", "GLPNFeatureExtractor"),
        ("groupvit", "CLIPFeatureExtractor"),
        ("hubert", "Wav2Vec2FeatureExtractor"),
        ("imagegpt", "ImageGPTFeatureExtractor"),
        ("layoutlmv2", "LayoutLMv2FeatureExtractor"),
        ("layoutlmv3", "LayoutLMv3FeatureExtractor"),
        ("levit", "LevitFeatureExtractor"),
        ("maskformer", "MaskFormerFeatureExtractor"),
        ("mctct", "MCTCTFeatureExtractor"),
        ("mobilenet_v1", "MobileNetV1FeatureExtractor"),
        ("mobilenet_v2", "MobileNetV2FeatureExtractor"),
        ("mobilevit", "MobileViTFeatureExtractor"),
        ("nat", "ViTFeatureExtractor"),
        ("owlvit", "OwlViTFeatureExtractor"),
        ("perceiver", "PerceiverFeatureExtractor"),
        ("poolformer", "PoolFormerFeatureExtractor"),
        ("pop2piano", "Pop2PianoFeatureExtractor"),
        ("regnet", "ConvNextFeatureExtractor"),
        ("resnet", "ConvNextFeatureExtractor"),
        ("segformer", "SegformerFeatureExtractor"),
        ("sew", "Wav2Vec2FeatureExtractor"),
        ("sew-d", "Wav2Vec2FeatureExtractor"),
        ("speech_to_text", "Speech2TextFeatureExtractor"),
        ("speecht5", "SpeechT5FeatureExtractor"),
        ("swiftformer", "ViTFeatureExtractor"),
        ("swin", "ViTFeatureExtractor"),
        ("swinv2", "ViTFeatureExtractor"),
        ("table-transformer", "DetrFeatureExtractor"),
        ("timesformer", "VideoMAEFeatureExtractor"),
        ("tvlt", "TvltFeatureExtractor"),
        ("unispeech", "Wav2Vec2FeatureExtractor"),
        ("unispeech-sat", "Wav2Vec2FeatureExtractor"),
        ("van", "ConvNextFeatureExtractor"),
        ("videomae", "VideoMAEFeatureExtractor"),
        ("vilt", "ViltFeatureExtractor"),
        ("vit", "ViTFeatureExtractor"),
        ("vit_mae", "ViTFeatureExtractor"),
        ("vit_msn", "ViTFeatureExtractor"),
        ("wav2vec2", "Wav2Vec2FeatureExtractor"),
        ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
        ("wavlm", "Wav2Vec2FeatureExtractor"),
        ("whisper", "WhisperFeatureExtractor"),
        ("xclip", "CLIPFeatureExtractor"),
        ("yolos", "YolosFeatureExtractor"),
    ]
)

FEATURE_EXTRACTOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)


def feature_extractor_class_from_name(class_name: str):
    for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
        if class_name in extractors:
            module_name = model_type_to_module_name(module_name)

            module = importlib.import_module(f".{module_name}", "transformers.models")
            try:
                return getattr(module, class_name)
            except AttributeError:
                continue

    for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
        if getattr(extractor, "__name__", None) == class_name:
            return extractor

    # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
    # init and we return the proper dummy to get an appropriate error message.
    main_module = importlib.import_module("transformers")
    if hasattr(main_module, class_name):
        return getattr(main_module, class_name)

    return None


def get_feature_extractor_config(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
    **kwargs,
):
    """
    Loads the tokenizer configuration from a pretrained model tokenizer configuration.

    Args:
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.

        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        resume_download (`bool`, *optional*, defaults to `False`):
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
        token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `huggingface-cli login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.

    <Tip>

    Passing `token=True` is required when you want to use a private model.

    </Tip>

    Returns:
        `Dict`: The configuration of the tokenizer.

    Examples:

    ```python
    # Download configuration from huggingface.co and cache.
    tokenizer_config = get_tokenizer_config("bert-base-uncased")
    # This model does not have a tokenizer config so the result will be an empty dict.
    tokenizer_config = get_tokenizer_config("xlm-roberta-base")

    # Save a pretrained tokenizer locally and you can reload its config
    from transformers import AutoTokenizer

    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    tokenizer.save_pretrained("tokenizer-test")
    tokenizer_config = get_tokenizer_config("tokenizer-test")
    ```"""
    use_auth_token = kwargs.pop("use_auth_token", None)
    if use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
        )
        if token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        token = use_auth_token

    resolved_config_file = get_file_from_repo(
        pretrained_model_name_or_path,
        FEATURE_EXTRACTOR_NAME,
        cache_dir=cache_dir,
        force_download=force_download,
        resume_download=resume_download,
        proxies=proxies,
        token=token,
        revision=revision,
        local_files_only=local_files_only,
    )
    if resolved_config_file is None:
        logger.info(
            "Could not locate the feature extractor configuration file, will try to use the model config instead."
        )
        return {}

    with open(resolved_config_file, encoding="utf-8") as reader:
        return json.load(reader)


class AutoFeatureExtractor:
    r"""
    This is a generic feature extractor class that will be instantiated as one of the feature extractor classes of the
    library when created with the [`AutoFeatureExtractor.from_pretrained`] class method.

    This class cannot be instantiated directly using `__init__()` (throws an error).
    """

    def __init__(self):
        raise EnvironmentError(
            "AutoFeatureExtractor is designed to be instantiated "
            "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method."
        )

    @classmethod
    @replace_list_option_in_docstrings(FEATURE_EXTRACTOR_MAPPING_NAMES)
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        r"""
        Instantiate one of the feature extractor classes of the library from a pretrained model vocabulary.

        The feature extractor class to instantiate is selected based on the `model_type` property of the config object
        (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's
        missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:

        List options

        Params:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                This can be either:

                - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
                  huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
                  namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
                - a path to a *directory* containing a feature extractor file saved using the
                  [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g.,
                  `./my_model_directory/`.
                - a path or url to a saved feature extractor JSON *file*, e.g.,
                  `./my_model_directory/preprocessor_config.json`.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model feature extractor should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force to (re-)download the feature extractor files and override the cached versions
                if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received file. Attempts to resume the download if such a file
                exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                If `False`, then this function returns just the final feature extractor object. If `True`, then this
                functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary
                consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of
                `kwargs` which has not been used to update `feature_extractor` and is otherwise ignored.
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
            kwargs (`Dict[str, Any]`, *optional*):
                The values in kwargs of any keys which are feature extractor attributes will be used to override the
                loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is
                controlled by the `return_unused_kwargs` keyword parameter.

        <Tip>

        Passing `token=True` is required when you want to use a private model.

        </Tip>

        Examples:

        ```python
        >>> from transformers import AutoFeatureExtractor

        >>> # Download feature extractor from huggingface.co and cache.
        >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")

        >>> # If feature extractor files are in a directory (e.g. feature extractor was saved using *save_pretrained('./test/saved_model/')*)
        >>> # feature_extractor = AutoFeatureExtractor.from_pretrained("./test/saved_model/")
        ```"""
        use_auth_token = kwargs.pop("use_auth_token", None)
        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if kwargs.get("token", None) is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            kwargs["token"] = use_auth_token

        config = kwargs.pop("config", None)
        trust_remote_code = kwargs.pop("trust_remote_code", None)
        kwargs["_from_auto"] = True

        config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs)
        feature_extractor_class = config_dict.get("feature_extractor_type", None)
        feature_extractor_auto_map = None
        if "AutoFeatureExtractor" in config_dict.get("auto_map", {}):
            feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"]

        # If we don't find the feature extractor class in the feature extractor config, let's try the model config.
        if feature_extractor_class is None and feature_extractor_auto_map is None:
            if not isinstance(config, PretrainedConfig):
                config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
            # It could be in `config.feature_extractor_type``
            feature_extractor_class = getattr(config, "feature_extractor_type", None)
            if hasattr(config, "auto_map") and "AutoFeatureExtractor" in config.auto_map:
                feature_extractor_auto_map = config.auto_map["AutoFeatureExtractor"]

        if feature_extractor_class is not None:
            feature_extractor_class = feature_extractor_class_from_name(feature_extractor_class)

        has_remote_code = feature_extractor_auto_map is not None
        has_local_code = feature_extractor_class is not None or type(config) in FEATURE_EXTRACTOR_MAPPING
        trust_remote_code = resolve_trust_remote_code(
            trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
        )

        if has_remote_code and trust_remote_code:
            feature_extractor_class = get_class_from_dynamic_module(
                feature_extractor_auto_map, pretrained_model_name_or_path, **kwargs
            )
            _ = kwargs.pop("code_revision", None)
            if os.path.isdir(pretrained_model_name_or_path):
                feature_extractor_class.register_for_auto_class()
            return feature_extractor_class.from_dict(config_dict, **kwargs)
        elif feature_extractor_class is not None:
            return feature_extractor_class.from_dict(config_dict, **kwargs)
        # Last try: we use the FEATURE_EXTRACTOR_MAPPING.
        elif type(config) in FEATURE_EXTRACTOR_MAPPING:
            feature_extractor_class = FEATURE_EXTRACTOR_MAPPING[type(config)]
            return feature_extractor_class.from_dict(config_dict, **kwargs)

        raise ValueError(
            f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a "
            f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following "
            f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}"
        )

    @staticmethod
    def register(config_class, feature_extractor_class, exist_ok=False):
        """
        Register a new feature extractor for this class.

        Args:
            config_class ([`PretrainedConfig`]):
                The configuration corresponding to the model to register.
            feature_extractor_class ([`FeatureExtractorMixin`]): The feature extractor to register.
        """
        FEATURE_EXTRACTOR_MAPPING.register(config_class, feature_extractor_class, exist_ok=exist_ok)