File size: 43,251 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Factory function to build auto-model classes."""
import copy
import importlib
import json
import os
import warnings
from collections import OrderedDict

from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...utils import (
    CONFIG_NAME,
    cached_file,
    copy_func,
    extract_commit_hash,
    find_adapter_config_file,
    is_peft_available,
    logging,
    requires_backends,
)
from .configuration_auto import AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings


logger = logging.get_logger(__name__)


CLASS_DOCSTRING = """
    This is a generic model class that will be instantiated as one of the model classes of the library when created
    with the [`~BaseAutoModelClass.from_pretrained`] class method or the [`~BaseAutoModelClass.from_config`] class
    method.

    This class cannot be instantiated directly using `__init__()` (throws an error).
"""

FROM_CONFIG_DOCSTRING = """
        Instantiates one of the model classes of the library from a configuration.

        Note:
            Loading a model from its configuration file does **not** load the model weights. It only affects the
            model's configuration. Use [`~BaseAutoModelClass.from_pretrained`] to load the model weights.

        Args:
            config ([`PretrainedConfig`]):
                The model class to instantiate is selected based on the configuration class:

                List options

        Examples:

        ```python
        >>> from transformers import AutoConfig, BaseAutoModelClass

        >>> # Download configuration from huggingface.co and cache.
        >>> config = AutoConfig.from_pretrained("checkpoint_placeholder")
        >>> model = BaseAutoModelClass.from_config(config)
        ```
"""

FROM_PRETRAINED_TORCH_DOCSTRING = """
        Instantiate one of the model classes of the library from a pretrained model.

        The model class to instantiate is selected based on the `model_type` property of the config object (either
        passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
        falling back to using pattern matching on `pretrained_model_name_or_path`:

        List options

        The model is set in evaluation mode by default using `model.eval()` (so for instance, dropout modules are
        deactivated). To train the model, you should first set it back in training mode with `model.train()`

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
            model_args (additional positional arguments, *optional*):
                Will be passed along to the underlying model `__init__()` method.
            config ([`PretrainedConfig`], *optional*):
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
                      model).
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (*Dict[str, torch.Tensor]*, *optional*):
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_tf (`bool`, *optional*, defaults to `False`):
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
                `pretrained_model_name_or_path` argument).
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (e.g., not try downloading the model).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
            code_revision (`str`, *optional*, defaults to `"main"`):
                The specific revision to use for the code on the Hub, if the code leaves in a different repository than
                the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based
                system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier
                allowed by git.
            kwargs (additional keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
                automatically loaded:

                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.

        Examples:

        ```python
        >>> from transformers import AutoConfig, BaseAutoModelClass

        >>> # Download model and configuration from huggingface.co and cache.
        >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")

        >>> # Update configuration during loading
        >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
        >>> model.config.output_attentions
        True

        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
        >>> config = AutoConfig.from_pretrained("./tf_model/shortcut_placeholder_tf_model_config.json")
        >>> model = BaseAutoModelClass.from_pretrained(
        ...     "./tf_model/shortcut_placeholder_tf_checkpoint.ckpt.index", from_tf=True, config=config
        ... )
        ```
"""

FROM_PRETRAINED_TF_DOCSTRING = """
        Instantiate one of the model classes of the library from a pretrained model.

        The model class to instantiate is selected based on the `model_type` property of the config object (either
        passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
        falling back to using pattern matching on `pretrained_model_name_or_path`:

        List options

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this
                      case, `from_pt` should be set to `True` and a configuration object should be provided as `config`
                      argument. This loading path is slower than converting the PyTorch model in a TensorFlow model
                      using the provided conversion scripts and loading the TensorFlow model afterwards.
            model_args (additional positional arguments, *optional*):
                Will be passed along to the underlying model `__init__()` method.
            config ([`PretrainedConfig`], *optional*):
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
                      model).
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_pt (`bool`, *optional*, defaults to `False`):
                Load the model weights from a PyTorch checkpoint save file (see docstring of
                `pretrained_model_name_or_path` argument).
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (e.g., not try downloading the model).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
            code_revision (`str`, *optional*, defaults to `"main"`):
                The specific revision to use for the code on the Hub, if the code leaves in a different repository than
                the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based
                system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier
                allowed by git.
            kwargs (additional keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
                automatically loaded:

                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.

        Examples:

        ```python
        >>> from transformers import AutoConfig, BaseAutoModelClass

        >>> # Download model and configuration from huggingface.co and cache.
        >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")

        >>> # Update configuration during loading
        >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
        >>> model.config.output_attentions
        True

        >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
        >>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json")
        >>> model = BaseAutoModelClass.from_pretrained(
        ...     "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config
        ... )
        ```
"""

FROM_PRETRAINED_FLAX_DOCSTRING = """
        Instantiate one of the model classes of the library from a pretrained model.

        The model class to instantiate is selected based on the `model_type` property of the config object (either
        passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
        falling back to using pattern matching on `pretrained_model_name_or_path`:

        List options

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this
                      case, `from_pt` should be set to `True` and a configuration object should be provided as `config`
                      argument. This loading path is slower than converting the PyTorch model in a TensorFlow model
                      using the provided conversion scripts and loading the TensorFlow model afterwards.
            model_args (additional positional arguments, *optional*):
                Will be passed along to the underlying model `__init__()` method.
            config ([`PretrainedConfig`], *optional*):
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
                      model).
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_pt (`bool`, *optional*, defaults to `False`):
                Load the model weights from a PyTorch checkpoint save file (see docstring of
                `pretrained_model_name_or_path` argument).
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (e.g., not try downloading the model).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
            code_revision (`str`, *optional*, defaults to `"main"`):
                The specific revision to use for the code on the Hub, if the code leaves in a different repository than
                the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based
                system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier
                allowed by git.
            kwargs (additional keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
                automatically loaded:

                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.

        Examples:

        ```python
        >>> from transformers import AutoConfig, BaseAutoModelClass

        >>> # Download model and configuration from huggingface.co and cache.
        >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")

        >>> # Update configuration during loading
        >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
        >>> model.config.output_attentions
        True

        >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
        >>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json")
        >>> model = BaseAutoModelClass.from_pretrained(
        ...     "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config
        ... )
        ```
"""


def _get_model_class(config, model_mapping):
    supported_models = model_mapping[type(config)]
    if not isinstance(supported_models, (list, tuple)):
        return supported_models

    name_to_model = {model.__name__: model for model in supported_models}
    architectures = getattr(config, "architectures", [])
    for arch in architectures:
        if arch in name_to_model:
            return name_to_model[arch]
        elif f"TF{arch}" in name_to_model:
            return name_to_model[f"TF{arch}"]
        elif f"Flax{arch}" in name_to_model:
            return name_to_model[f"Flax{arch}"]

    # If not architecture is set in the config or match the supported models, the first element of the tuple is the
    # defaults.
    return supported_models[0]


class _BaseAutoModelClass:
    # Base class for auto models.
    _model_mapping = None

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_config(config)` methods."
        )

    @classmethod
    def from_config(cls, config, **kwargs):
        trust_remote_code = kwargs.pop("trust_remote_code", None)
        has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map
        has_local_code = type(config) in cls._model_mapping.keys()
        trust_remote_code = resolve_trust_remote_code(
            trust_remote_code, config._name_or_path, has_local_code, has_remote_code
        )

        if has_remote_code and trust_remote_code:
            class_ref = config.auto_map[cls.__name__]
            if "--" in class_ref:
                repo_id, class_ref = class_ref.split("--")
            else:
                repo_id = config.name_or_path
            model_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
            if os.path.isdir(config._name_or_path):
                model_class.register_for_auto_class(cls.__name__)
            else:
                cls.register(config.__class__, model_class, exist_ok=True)
            _ = kwargs.pop("code_revision", None)
            return model_class._from_config(config, **kwargs)
        elif type(config) in cls._model_mapping.keys():
            model_class = _get_model_class(config, cls._model_mapping)
            return model_class._from_config(config, **kwargs)

        raise ValueError(
            f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
            f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
        )

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        config = kwargs.pop("config", None)
        trust_remote_code = kwargs.pop("trust_remote_code", None)
        kwargs["_from_auto"] = True
        hub_kwargs_names = [
            "cache_dir",
            "force_download",
            "local_files_only",
            "proxies",
            "resume_download",
            "revision",
            "subfolder",
            "use_auth_token",
            "token",
        ]
        hub_kwargs = {name: kwargs.pop(name) for name in hub_kwargs_names if name in kwargs}
        code_revision = kwargs.pop("code_revision", None)
        commit_hash = kwargs.pop("_commit_hash", None)
        adapter_kwargs = kwargs.pop("adapter_kwargs", None)

        token = hub_kwargs.pop("token", None)
        use_auth_token = hub_kwargs.pop("use_auth_token", None)
        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            hub_kwargs["token"] = token

        if commit_hash is None:
            if not isinstance(config, PretrainedConfig):
                # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
                resolved_config_file = cached_file(
                    pretrained_model_name_or_path,
                    CONFIG_NAME,
                    _raise_exceptions_for_missing_entries=False,
                    _raise_exceptions_for_connection_errors=False,
                    **hub_kwargs,
                )
                commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
            else:
                commit_hash = getattr(config, "_commit_hash", None)

        if is_peft_available():
            if adapter_kwargs is None:
                adapter_kwargs = {}
                if token is not None:
                    adapter_kwargs["token"] = token

            maybe_adapter_path = find_adapter_config_file(
                pretrained_model_name_or_path, _commit_hash=commit_hash, **adapter_kwargs
            )

            if maybe_adapter_path is not None:
                with open(maybe_adapter_path, "r", encoding="utf-8") as f:
                    adapter_config = json.load(f)

                    adapter_kwargs["_adapter_model_path"] = pretrained_model_name_or_path
                    pretrained_model_name_or_path = adapter_config["base_model_name_or_path"]

        if not isinstance(config, PretrainedConfig):
            kwargs_orig = copy.deepcopy(kwargs)
            # ensure not to pollute the config object with torch_dtype="auto" - since it's
            # meaningless in the context of the config object - torch.dtype values are acceptable
            if kwargs.get("torch_dtype", None) == "auto":
                _ = kwargs.pop("torch_dtype")
            # to not overwrite the quantization_config if config has a quantization_config
            if kwargs.get("quantization_config", None) is not None:
                _ = kwargs.pop("quantization_config")

            config, kwargs = AutoConfig.from_pretrained(
                pretrained_model_name_or_path,
                return_unused_kwargs=True,
                trust_remote_code=trust_remote_code,
                code_revision=code_revision,
                _commit_hash=commit_hash,
                **hub_kwargs,
                **kwargs,
            )

            # if torch_dtype=auto was passed here, ensure to pass it on
            if kwargs_orig.get("torch_dtype", None) == "auto":
                kwargs["torch_dtype"] = "auto"
            if kwargs_orig.get("quantization_config", None) is not None:
                kwargs["quantization_config"] = kwargs_orig["quantization_config"]

        has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map
        has_local_code = type(config) in cls._model_mapping.keys()
        trust_remote_code = resolve_trust_remote_code(
            trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
        )

        # Set the adapter kwargs
        kwargs["adapter_kwargs"] = adapter_kwargs

        if has_remote_code and trust_remote_code:
            class_ref = config.auto_map[cls.__name__]
            model_class = get_class_from_dynamic_module(
                class_ref, pretrained_model_name_or_path, code_revision=code_revision, **hub_kwargs, **kwargs
            )
            _ = hub_kwargs.pop("code_revision", None)
            if os.path.isdir(pretrained_model_name_or_path):
                model_class.register_for_auto_class(cls.__name__)
            else:
                cls.register(config.__class__, model_class, exist_ok=True)
            return model_class.from_pretrained(
                pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
            )
        elif type(config) in cls._model_mapping.keys():
            model_class = _get_model_class(config, cls._model_mapping)
            return model_class.from_pretrained(
                pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
            )
        raise ValueError(
            f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
            f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
        )

    @classmethod
    def register(cls, config_class, model_class, exist_ok=False):
        """
        Register a new model for this class.

        Args:
            config_class ([`PretrainedConfig`]):
                The configuration corresponding to the model to register.
            model_class ([`PreTrainedModel`]):
                The model to register.
        """
        if hasattr(model_class, "config_class") and model_class.config_class != config_class:
            raise ValueError(
                "The model class you are passing has a `config_class` attribute that is not consistent with the "
                f"config class you passed (model has {model_class.config_class} and you passed {config_class}. Fix "
                "one of those so they match!"
            )
        cls._model_mapping.register(config_class, model_class, exist_ok=exist_ok)


class _BaseAutoBackboneClass(_BaseAutoModelClass):
    # Base class for auto backbone models.
    _model_mapping = None

    @classmethod
    def _load_timm_backbone_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        requires_backends(cls, ["vision", "timm"])
        from ...models.timm_backbone import TimmBackboneConfig

        config = kwargs.pop("config", TimmBackboneConfig())

        use_timm = kwargs.pop("use_timm_backbone", True)
        if not use_timm:
            raise ValueError("`use_timm_backbone` must be `True` for timm backbones")

        if kwargs.get("out_features", None) is not None:
            raise ValueError("Cannot specify `out_features` for timm backbones")

        if kwargs.get("output_loading_info", False):
            raise ValueError("Cannot specify `output_loading_info=True` when loading from timm")

        num_channels = kwargs.pop("num_channels", config.num_channels)
        features_only = kwargs.pop("features_only", config.features_only)
        use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone)
        out_indices = kwargs.pop("out_indices", config.out_indices)
        config = TimmBackboneConfig(
            backbone=pretrained_model_name_or_path,
            num_channels=num_channels,
            features_only=features_only,
            use_pretrained_backbone=use_pretrained_backbone,
            out_indices=out_indices,
        )
        return super().from_config(config, **kwargs)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        if kwargs.get("use_timm_backbone", False):
            return cls._load_timm_backbone_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)


def insert_head_doc(docstring, head_doc=""):
    if len(head_doc) > 0:
        return docstring.replace(
            "one of the model classes of the library ",
            f"one of the model classes of the library (with a {head_doc} head) ",
        )
    return docstring.replace(
        "one of the model classes of the library ", "one of the base model classes of the library "
    )


def auto_class_update(cls, checkpoint_for_example="bert-base-cased", head_doc=""):
    # Create a new class with the right name from the base class
    model_mapping = cls._model_mapping
    name = cls.__name__
    class_docstring = insert_head_doc(CLASS_DOCSTRING, head_doc=head_doc)
    cls.__doc__ = class_docstring.replace("BaseAutoModelClass", name)

    # Now we need to copy and re-register `from_config` and `from_pretrained` as class methods otherwise we can't
    # have a specific docstrings for them.
    from_config = copy_func(_BaseAutoModelClass.from_config)
    from_config_docstring = insert_head_doc(FROM_CONFIG_DOCSTRING, head_doc=head_doc)
    from_config_docstring = from_config_docstring.replace("BaseAutoModelClass", name)
    from_config_docstring = from_config_docstring.replace("checkpoint_placeholder", checkpoint_for_example)
    from_config.__doc__ = from_config_docstring
    from_config = replace_list_option_in_docstrings(model_mapping._model_mapping, use_model_types=False)(from_config)
    cls.from_config = classmethod(from_config)

    if name.startswith("TF"):
        from_pretrained_docstring = FROM_PRETRAINED_TF_DOCSTRING
    elif name.startswith("Flax"):
        from_pretrained_docstring = FROM_PRETRAINED_FLAX_DOCSTRING
    else:
        from_pretrained_docstring = FROM_PRETRAINED_TORCH_DOCSTRING
    from_pretrained = copy_func(_BaseAutoModelClass.from_pretrained)
    from_pretrained_docstring = insert_head_doc(from_pretrained_docstring, head_doc=head_doc)
    from_pretrained_docstring = from_pretrained_docstring.replace("BaseAutoModelClass", name)
    from_pretrained_docstring = from_pretrained_docstring.replace("checkpoint_placeholder", checkpoint_for_example)
    shortcut = checkpoint_for_example.split("/")[-1].split("-")[0]
    from_pretrained_docstring = from_pretrained_docstring.replace("shortcut_placeholder", shortcut)
    from_pretrained.__doc__ = from_pretrained_docstring
    from_pretrained = replace_list_option_in_docstrings(model_mapping._model_mapping)(from_pretrained)
    cls.from_pretrained = classmethod(from_pretrained)
    return cls


def get_values(model_mapping):
    result = []
    for model in model_mapping.values():
        if isinstance(model, (list, tuple)):
            result += list(model)
        else:
            result.append(model)

    return result


def getattribute_from_module(module, attr):
    if attr is None:
        return None
    if isinstance(attr, tuple):
        return tuple(getattribute_from_module(module, a) for a in attr)
    if hasattr(module, attr):
        return getattr(module, attr)
    # Some of the mappings have entries model_type -> object of another model type. In that case we try to grab the
    # object at the top level.
    transformers_module = importlib.import_module("transformers")

    if module != transformers_module:
        try:
            return getattribute_from_module(transformers_module, attr)
        except ValueError:
            raise ValueError(f"Could not find {attr} neither in {module} nor in {transformers_module}!")
    else:
        raise ValueError(f"Could not find {attr} in {transformers_module}!")


class _LazyAutoMapping(OrderedDict):
    """
    " A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed.

    Args:
        - config_mapping: The map model type to config class
        - model_mapping: The map model type to model (or tokenizer) class
    """

    def __init__(self, config_mapping, model_mapping):
        self._config_mapping = config_mapping
        self._reverse_config_mapping = {v: k for k, v in config_mapping.items()}
        self._model_mapping = model_mapping
        self._model_mapping._model_mapping = self
        self._extra_content = {}
        self._modules = {}

    def __len__(self):
        common_keys = set(self._config_mapping.keys()).intersection(self._model_mapping.keys())
        return len(common_keys) + len(self._extra_content)

    def __getitem__(self, key):
        if key in self._extra_content:
            return self._extra_content[key]
        model_type = self._reverse_config_mapping[key.__name__]
        if model_type in self._model_mapping:
            model_name = self._model_mapping[model_type]
            return self._load_attr_from_module(model_type, model_name)

        # Maybe there was several model types associated with this config.
        model_types = [k for k, v in self._config_mapping.items() if v == key.__name__]
        for mtype in model_types:
            if mtype in self._model_mapping:
                model_name = self._model_mapping[mtype]
                return self._load_attr_from_module(mtype, model_name)
        raise KeyError(key)

    def _load_attr_from_module(self, model_type, attr):
        module_name = model_type_to_module_name(model_type)
        if module_name not in self._modules:
            self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models")
        return getattribute_from_module(self._modules[module_name], attr)

    def keys(self):
        mapping_keys = [
            self._load_attr_from_module(key, name)
            for key, name in self._config_mapping.items()
            if key in self._model_mapping.keys()
        ]
        return mapping_keys + list(self._extra_content.keys())

    def get(self, key, default):
        try:
            return self.__getitem__(key)
        except KeyError:
            return default

    def __bool__(self):
        return bool(self.keys())

    def values(self):
        mapping_values = [
            self._load_attr_from_module(key, name)
            for key, name in self._model_mapping.items()
            if key in self._config_mapping.keys()
        ]
        return mapping_values + list(self._extra_content.values())

    def items(self):
        mapping_items = [
            (
                self._load_attr_from_module(key, self._config_mapping[key]),
                self._load_attr_from_module(key, self._model_mapping[key]),
            )
            for key in self._model_mapping.keys()
            if key in self._config_mapping.keys()
        ]
        return mapping_items + list(self._extra_content.items())

    def __iter__(self):
        return iter(self.keys())

    def __contains__(self, item):
        if item in self._extra_content:
            return True
        if not hasattr(item, "__name__") or item.__name__ not in self._reverse_config_mapping:
            return False
        model_type = self._reverse_config_mapping[item.__name__]
        return model_type in self._model_mapping

    def register(self, key, value, exist_ok=False):
        """
        Register a new model in this mapping.
        """
        if hasattr(key, "__name__") and key.__name__ in self._reverse_config_mapping:
            model_type = self._reverse_config_mapping[key.__name__]
            if model_type in self._model_mapping.keys() and not exist_ok:
                raise ValueError(f"'{key}' is already used by a Transformers model.")

        self._extra_content[key] = value