File size: 8,026 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional

from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand


try:
    from fastapi import Body, FastAPI, HTTPException
    from fastapi.routing import APIRoute
    from pydantic import BaseModel
    from starlette.responses import JSONResponse
    from uvicorn import run

    _serve_dependencies_installed = True
except (ImportError, AttributeError):
    BaseModel = object

    def Body(*x, **y):
        pass

    _serve_dependencies_installed = False


logger = logging.get_logger("transformers-cli/serving")


def serve_command_factory(args: Namespace):
    """
    Factory function used to instantiate serving server from provided command line arguments.

    Returns: ServeCommand
    """
    nlp = pipeline(
        task=args.task,
        model=args.model if args.model else None,
        config=args.config,
        tokenizer=args.tokenizer,
        device=args.device,
    )
    return ServeCommand(nlp, args.host, args.port, args.workers)


class ServeModelInfoResult(BaseModel):
    """
    Expose model information
    """

    infos: dict


class ServeTokenizeResult(BaseModel):
    """
    Tokenize result model
    """

    tokens: List[str]
    tokens_ids: Optional[List[int]]


class ServeDeTokenizeResult(BaseModel):
    """
    DeTokenize result model
    """

    text: str


class ServeForwardResult(BaseModel):
    """
    Forward result model
    """

    output: Any


class ServeCommand(BaseTransformersCLICommand):
    @staticmethod
    def register_subcommand(parser: ArgumentParser):
        """
        Register this command to argparse so it's available for the transformer-cli

        Args:
            parser: Root parser to register command-specific arguments
        """
        serve_parser = parser.add_parser(
            "serve", help="CLI tool to run inference requests through REST and GraphQL endpoints."
        )
        serve_parser.add_argument(
            "--task",
            type=str,
            choices=get_supported_tasks(),
            help="The task to run the pipeline on",
        )
        serve_parser.add_argument("--host", type=str, default="localhost", help="Interface the server will listen on.")
        serve_parser.add_argument("--port", type=int, default=8888, help="Port the serving will listen to.")
        serve_parser.add_argument("--workers", type=int, default=1, help="Number of http workers")
        serve_parser.add_argument("--model", type=str, help="Model's name or path to stored model.")
        serve_parser.add_argument("--config", type=str, help="Model's config name or path to stored model.")
        serve_parser.add_argument("--tokenizer", type=str, help="Tokenizer name to use.")
        serve_parser.add_argument(
            "--device",
            type=int,
            default=-1,
            help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",
        )
        serve_parser.set_defaults(func=serve_command_factory)

    def __init__(self, pipeline: Pipeline, host: str, port: int, workers: int):
        self._pipeline = pipeline

        self.host = host
        self.port = port
        self.workers = workers

        if not _serve_dependencies_installed:
            raise RuntimeError(
                "Using serve command requires FastAPI and uvicorn. "
                'Please install transformers with [serving]: pip install "transformers[serving]".'
                "Or install FastAPI and uvicorn separately."
            )
        else:
            logger.info(f"Serving model over {host}:{port}")
            self._app = FastAPI(
                routes=[
                    APIRoute(
                        "/",
                        self.model_info,
                        response_model=ServeModelInfoResult,
                        response_class=JSONResponse,
                        methods=["GET"],
                    ),
                    APIRoute(
                        "/tokenize",
                        self.tokenize,
                        response_model=ServeTokenizeResult,
                        response_class=JSONResponse,
                        methods=["POST"],
                    ),
                    APIRoute(
                        "/detokenize",
                        self.detokenize,
                        response_model=ServeDeTokenizeResult,
                        response_class=JSONResponse,
                        methods=["POST"],
                    ),
                    APIRoute(
                        "/forward",
                        self.forward,
                        response_model=ServeForwardResult,
                        response_class=JSONResponse,
                        methods=["POST"],
                    ),
                ],
                timeout=600,
            )

    def run(self):
        run(self._app, host=self.host, port=self.port, workers=self.workers)

    def model_info(self):
        return ServeModelInfoResult(infos=vars(self._pipeline.model.config))

    def tokenize(self, text_input: str = Body(None, embed=True), return_ids: bool = Body(False, embed=True)):
        """
        Tokenize the provided input and eventually returns corresponding tokens id: - **text_input**: String to
        tokenize - **return_ids**: Boolean flags indicating if the tokens have to be converted to their integer
        mapping.
        """
        try:
            tokens_txt = self._pipeline.tokenizer.tokenize(text_input)

            if return_ids:
                tokens_ids = self._pipeline.tokenizer.convert_tokens_to_ids(tokens_txt)
                return ServeTokenizeResult(tokens=tokens_txt, tokens_ids=tokens_ids)
            else:
                return ServeTokenizeResult(tokens=tokens_txt)

        except Exception as e:
            raise HTTPException(status_code=500, detail={"model": "", "error": str(e)})

    def detokenize(
        self,
        tokens_ids: List[int] = Body(None, embed=True),
        skip_special_tokens: bool = Body(False, embed=True),
        cleanup_tokenization_spaces: bool = Body(True, embed=True),
    ):
        """
        Detokenize the provided tokens ids to readable text: - **tokens_ids**: List of tokens ids -
        **skip_special_tokens**: Flag indicating to not try to decode special tokens - **cleanup_tokenization_spaces**:
        Flag indicating to remove all leading/trailing spaces and intermediate ones.
        """
        try:
            decoded_str = self._pipeline.tokenizer.decode(tokens_ids, skip_special_tokens, cleanup_tokenization_spaces)
            return ServeDeTokenizeResult(model="", text=decoded_str)
        except Exception as e:
            raise HTTPException(status_code=500, detail={"model": "", "error": str(e)})

    async def forward(self, inputs=Body(None, embed=True)):
        """
        **inputs**: **attention_mask**: **tokens_type_ids**:
        """

        # Check we don't have empty string
        if len(inputs) == 0:
            return ServeForwardResult(output=[], attention=[])

        try:
            # Forward through the model
            output = self._pipeline(inputs)
            return ServeForwardResult(output=output)
        except Exception as e:
            raise HTTPException(500, {"error": str(e)})