File size: 4,397 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING

from ...utils import (
    OptionalDependencyNotAvailable,
    _LazyModule,
    is_flax_available,
    is_tf_available,
    is_tokenizers_available,
    is_torch_available,
)


_import_structure = {
    "configuration_bart": ["BART_PRETRAINED_CONFIG_ARCHIVE_MAP", "BartConfig", "BartOnnxConfig"],
    "tokenization_bart": ["BartTokenizer"],
}

try:
    if not is_tokenizers_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["tokenization_bart_fast"] = ["BartTokenizerFast"]

try:
    if not is_torch_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_bart"] = [
        "BART_PRETRAINED_MODEL_ARCHIVE_LIST",
        "BartForCausalLM",
        "BartForConditionalGeneration",
        "BartForQuestionAnswering",
        "BartForSequenceClassification",
        "BartModel",
        "BartPreTrainedModel",
        "BartPretrainedModel",
        "PretrainedBartModel",
    ]

try:
    if not is_tf_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_tf_bart"] = [
        "TFBartForConditionalGeneration",
        "TFBartForSequenceClassification",
        "TFBartModel",
        "TFBartPretrainedModel",
    ]

try:
    if not is_flax_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_flax_bart"] = [
        "FlaxBartDecoderPreTrainedModel",
        "FlaxBartForCausalLM",
        "FlaxBartForConditionalGeneration",
        "FlaxBartForQuestionAnswering",
        "FlaxBartForSequenceClassification",
        "FlaxBartModel",
        "FlaxBartPreTrainedModel",
    ]

if TYPE_CHECKING:
    from .configuration_bart import BART_PRETRAINED_CONFIG_ARCHIVE_MAP, BartConfig, BartOnnxConfig
    from .tokenization_bart import BartTokenizer

    try:
        if not is_tokenizers_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .tokenization_bart_fast import BartTokenizerFast

    try:
        if not is_torch_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_bart import (
            BART_PRETRAINED_MODEL_ARCHIVE_LIST,
            BartForCausalLM,
            BartForConditionalGeneration,
            BartForQuestionAnswering,
            BartForSequenceClassification,
            BartModel,
            BartPreTrainedModel,
            BartPretrainedModel,
            PretrainedBartModel,
        )

    try:
        if not is_tf_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_tf_bart import (
            TFBartForConditionalGeneration,
            TFBartForSequenceClassification,
            TFBartModel,
            TFBartPretrainedModel,
        )

    try:
        if not is_flax_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_flax_bart import (
            FlaxBartDecoderPreTrainedModel,
            FlaxBartForCausalLM,
            FlaxBartForConditionalGeneration,
            FlaxBartForQuestionAnswering,
            FlaxBartForSequenceClassification,
            FlaxBartModel,
            FlaxBartPreTrainedModel,
        )

else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)