File size: 24,778 Bytes
4c65bff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch - TF 2.0 general utilities."""
import os
import re
import numpy
from .utils import ExplicitEnum, expand_dims, is_numpy_array, is_torch_tensor, logging, reshape, squeeze, tensor_size
from .utils import transpose as transpose_func
logger = logging.get_logger(__name__)
class TransposeType(ExplicitEnum):
"""
Possible ...
"""
NO = "no"
SIMPLE = "simple"
CONV1D = "conv1d"
CONV2D = "conv2d"
def convert_tf_weight_name_to_pt_weight_name(
tf_name, start_prefix_to_remove="", tf_weight_shape=None, name_scope=None
):
"""
Convert a TF 2.0 model variable name in a pytorch model weight name.
Conventions for TF2.0 scopes -> PyTorch attribute names conversions:
- '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch)
- '_._' is replaced by a new level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList)
return tuple with:
- pytorch model weight name
- transpose: `TransposeType` member indicating whether and how TF2.0 and PyTorch weights matrices should be
transposed with regards to each other
"""
if name_scope is not None:
if not tf_name.startswith(name_scope):
raise ValueError(
f"Weight name {tf_name} does not start with name_scope {name_scope}. This is an internal error "
"in Transformers, so (unless you were doing something really evil) please open an issue to report it!"
)
tf_name = tf_name[len(name_scope) :]
tf_name = tf_name.lstrip("/")
tf_name = tf_name.replace(":0", "") # device ids
tf_name = re.sub(
r"/[^/]*___([^/]*)/", r"/\1/", tf_name
) # '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch)
tf_name = tf_name.replace(
"_._", "/"
) # '_._' is replaced by a level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList)
tf_name = re.sub(r"//+", "/", tf_name) # Remove empty levels at the end
tf_name = tf_name.split("/") # Convert from TF2.0 '/' separators to PyTorch '.' separators
# Some weights have a single name without "/" such as final_logits_bias in BART
if len(tf_name) > 1:
tf_name = tf_name[1:] # Remove level zero
tf_weight_shape = list(tf_weight_shape)
# When should we transpose the weights
if tf_name[-1] == "kernel" and tf_weight_shape is not None and len(tf_weight_shape) == 4:
transpose = TransposeType.CONV2D
elif tf_name[-1] == "kernel" and tf_weight_shape is not None and len(tf_weight_shape) == 3:
transpose = TransposeType.CONV1D
elif bool(
tf_name[-1] in ["kernel", "pointwise_kernel", "depthwise_kernel"]
or "emb_projs" in tf_name
or "out_projs" in tf_name
):
transpose = TransposeType.SIMPLE
else:
transpose = TransposeType.NO
# Convert standard TF2.0 names in PyTorch names
if tf_name[-1] == "kernel" or tf_name[-1] == "embeddings" or tf_name[-1] == "gamma":
tf_name[-1] = "weight"
if tf_name[-1] == "beta":
tf_name[-1] = "bias"
# The SeparableConv1D TF layer contains two weights that are translated to PyTorch Conv1D here
if tf_name[-1] == "pointwise_kernel" or tf_name[-1] == "depthwise_kernel":
tf_name[-1] = tf_name[-1].replace("_kernel", ".weight")
# Remove prefix if needed
tf_name = ".".join(tf_name)
if start_prefix_to_remove:
tf_name = tf_name.replace(start_prefix_to_remove, "", 1)
return tf_name, transpose
def apply_transpose(transpose: TransposeType, weight, match_shape=None, pt_to_tf=True):
"""
Apply a transpose to some weight then tries to reshape the weight to the same shape as a given shape, all in a
framework agnostic way.
"""
if transpose is TransposeType.CONV2D:
# Conv2D weight:
# PT: (num_out_channel, num_in_channel, kernel[0], kernel[1])
# -> TF: (kernel[0], kernel[1], num_in_channel, num_out_channel)
axes = (2, 3, 1, 0) if pt_to_tf else (3, 2, 0, 1)
weight = transpose_func(weight, axes=axes)
elif transpose is TransposeType.CONV1D:
# Conv1D weight:
# PT: (num_out_channel, num_in_channel, kernel)
# -> TF: (kernel, num_in_channel, num_out_channel)
weight = transpose_func(weight, axes=(2, 1, 0))
elif transpose is TransposeType.SIMPLE:
weight = transpose_func(weight)
if match_shape is None:
return weight
if len(match_shape) < len(weight.shape):
weight = squeeze(weight)
elif len(match_shape) > len(weight.shape):
weight = expand_dims(weight, axis=0)
if list(match_shape) != list(weight.shape):
try:
weight = reshape(weight, match_shape)
except AssertionError as e:
e.args += (match_shape, match_shape)
raise e
return weight
#####################
# PyTorch => TF 2.0 #
#####################
def load_pytorch_checkpoint_in_tf2_model(
tf_model,
pytorch_checkpoint_path,
tf_inputs=None,
allow_missing_keys=False,
output_loading_info=False,
_prefix=None,
tf_to_pt_weight_rename=None,
):
"""Load pytorch checkpoints in a TF 2.0 model"""
try:
import tensorflow as tf # noqa: F401
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see "
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
)
raise
# Treats a single file as a collection of shards with 1 shard.
if isinstance(pytorch_checkpoint_path, str):
pytorch_checkpoint_path = [pytorch_checkpoint_path]
# Loads all shards into a single state dictionary
pt_state_dict = {}
for path in pytorch_checkpoint_path:
pt_path = os.path.abspath(path)
logger.info(f"Loading PyTorch weights from {pt_path}")
pt_state_dict.update(torch.load(pt_path, map_location="cpu"))
logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters")
return load_pytorch_weights_in_tf2_model(
tf_model,
pt_state_dict,
tf_inputs=tf_inputs,
allow_missing_keys=allow_missing_keys,
output_loading_info=output_loading_info,
_prefix=_prefix,
tf_to_pt_weight_rename=tf_to_pt_weight_rename,
)
def load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=None, allow_missing_keys=False):
"""Load pytorch checkpoints in a TF 2.0 model"""
pt_state_dict = pt_model.state_dict()
return load_pytorch_weights_in_tf2_model(
tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys
)
def load_pytorch_weights_in_tf2_model(
tf_model,
pt_state_dict,
tf_inputs=None,
allow_missing_keys=False,
output_loading_info=False,
_prefix=None,
tf_to_pt_weight_rename=None,
):
"""Load pytorch state_dict in a TF 2.0 model."""
try:
import tensorflow as tf # noqa: F401
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see "
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
)
raise
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}
return load_pytorch_state_dict_in_tf2_model(
tf_model,
pt_state_dict,
tf_inputs=tf_inputs,
allow_missing_keys=allow_missing_keys,
output_loading_info=output_loading_info,
_prefix=_prefix,
tf_to_pt_weight_rename=tf_to_pt_weight_rename,
)
def load_pytorch_state_dict_in_tf2_model(
tf_model,
pt_state_dict,
tf_inputs=None,
allow_missing_keys=False,
output_loading_info=False,
_prefix=None,
tf_to_pt_weight_rename=None,
ignore_mismatched_sizes=False,
):
"""Load a pytorch state_dict in a TF 2.0 model. pt_state_dict can be either an actual dict or a lazy-loading
safetensors archive created with the safe_open() function."""
import tensorflow as tf
from keras import backend as K
if tf_inputs is None:
tf_inputs = tf_model.dummy_inputs
if _prefix is None:
_prefix = ""
if tf_inputs:
with tf.name_scope(_prefix):
tf_model(tf_inputs, training=False) # Make sure model is built
# Convert old format to new format if needed from a PyTorch state_dict
tf_keys_to_pt_keys = {}
for key in pt_state_dict.keys():
new_key = None
if "gamma" in key:
new_key = key.replace("gamma", "weight")
if "beta" in key:
new_key = key.replace("beta", "bias")
if "running_var" in key:
new_key = key.replace("running_var", "moving_variance")
if "running_mean" in key:
new_key = key.replace("running_mean", "moving_mean")
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
key_components = key.split(".")
name = None
if key_components[-3::2] == ["parametrizations", "original0"]:
name = key_components[-2] + "_g"
elif key_components[-3::2] == ["parametrizations", "original1"]:
name = key_components[-2] + "_v"
if name is not None:
key_components = key_components[:-3] + [name]
new_key = ".".join(key_components)
if new_key is None:
new_key = key
tf_keys_to_pt_keys[new_key] = key
# Matt: All TF models store the actual model stem in a MainLayer class, including the base model.
# In PT, the derived models (with heads) use the base model class as the stem instead,
# and there is no MainLayer class. This means that TF base classes have one
# extra layer in their weight names, corresponding to the MainLayer class. This code block compensates for that.
start_prefix_to_remove = ""
if not any(s.startswith(tf_model.base_model_prefix) for s in tf_keys_to_pt_keys.keys()):
start_prefix_to_remove = tf_model.base_model_prefix + "."
symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights
tf_loaded_numel = 0
all_pytorch_weights = set(tf_keys_to_pt_keys.keys())
missing_keys = []
mismatched_keys = []
is_safetensor_archive = hasattr(pt_state_dict, "get_tensor")
for symbolic_weight in symbolic_weights:
sw_name = symbolic_weight.name
name, transpose = convert_tf_weight_name_to_pt_weight_name(
sw_name,
start_prefix_to_remove=start_prefix_to_remove,
tf_weight_shape=symbolic_weight.shape,
name_scope=_prefix,
)
if tf_to_pt_weight_rename is not None:
name = tf_to_pt_weight_rename(name)
# Find associated numpy array in pytorch model state dict
if name not in tf_keys_to_pt_keys:
if allow_missing_keys:
missing_keys.append(name)
continue
elif tf_model._keys_to_ignore_on_load_missing is not None:
# authorized missing keys don't have to be loaded
if any(re.search(pat, name) is not None for pat in tf_model._keys_to_ignore_on_load_missing):
continue
raise AttributeError(f"{name} not found in PyTorch model")
state_dict_name = tf_keys_to_pt_keys[name]
if is_safetensor_archive:
array = pt_state_dict.get_tensor(state_dict_name)
else:
array = pt_state_dict[state_dict_name]
try:
array = apply_transpose(transpose, array, symbolic_weight.shape)
except tf.errors.InvalidArgumentError as e:
if not ignore_mismatched_sizes:
error_msg = str(e)
error_msg += (
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
)
raise tf.errors.InvalidArgumentError(error_msg)
else:
mismatched_keys.append((name, array.shape, symbolic_weight.shape))
continue
tf_loaded_numel += tensor_size(array)
K.set_value(symbolic_weight, array)
del array # Immediately free memory to keep peak usage as low as possible
all_pytorch_weights.discard(name)
logger.info(f"Loaded {tf_loaded_numel:,} parameters in the TF 2.0 model.")
unexpected_keys = list(all_pytorch_weights)
if tf_model._keys_to_ignore_on_load_missing is not None:
for pat in tf_model._keys_to_ignore_on_load_missing:
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
if tf_model._keys_to_ignore_on_load_unexpected is not None:
for pat in tf_model._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
"Some weights of the PyTorch model were not used when initializing the TF 2.0 model"
f" {tf_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
f" {tf_model.__class__.__name__} from a PyTorch model trained on another task or with another architecture"
" (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n- This IS"
f" NOT expected if you are initializing {tf_model.__class__.__name__} from a PyTorch model that you expect"
" to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a"
" BertForSequenceClassification model)."
)
else:
logger.warning(f"All PyTorch model weights were used when initializing {tf_model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some weights or buffers of the TF 2.0 model {tf_model.__class__.__name__} were not initialized from the"
f" PyTorch model and are newly initialized: {missing_keys}\nYou should probably TRAIN this model on a"
" down-stream task to be able to use it for predictions and inference."
)
else:
logger.warning(
f"All the weights of {tf_model.__class__.__name__} were initialized from the PyTorch model.\n"
"If your task is similar to the task the model of the checkpoint was trained on, "
f"you can already use {tf_model.__class__.__name__} for predictions without further training."
)
if len(mismatched_keys) > 0:
mismatched_warning = "\n".join(
[
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
for key, shape1, shape2 in mismatched_keys
]
)
logger.warning(
f"Some weights of {tf_model.__class__.__name__} were not initialized from the model checkpoint"
f" are newly initialized because the shapes did not"
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
" to use it for predictions and inference."
)
if output_loading_info:
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"mismatched_keys": mismatched_keys,
}
return tf_model, loading_info
return tf_model
#####################
# TF 2.0 => PyTorch #
#####################
def load_tf2_checkpoint_in_pytorch_model(
pt_model, tf_checkpoint_path, tf_inputs=None, allow_missing_keys=False, output_loading_info=False
):
"""
Load TF 2.0 HDF5 checkpoint in a PyTorch model We use HDF5 to easily do transfer learning (see
https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357).
"""
try:
import tensorflow as tf # noqa: F401
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
)
raise
import transformers
from .modeling_tf_utils import load_tf_weights
logger.info(f"Loading TensorFlow weights from {tf_checkpoint_path}")
# Instantiate and load the associated TF 2.0 model
tf_model_class_name = "TF" + pt_model.__class__.__name__ # Add "TF" at the beginning
tf_model_class = getattr(transformers, tf_model_class_name)
tf_model = tf_model_class(pt_model.config)
if tf_inputs is None:
tf_inputs = tf_model.dummy_inputs
if tf_inputs is not None:
tf_model(tf_inputs, training=False) # Make sure model is built
load_tf_weights(tf_model, tf_checkpoint_path)
return load_tf2_model_in_pytorch_model(
pt_model, tf_model, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info
)
def load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=False, output_loading_info=False):
"""Load TF 2.0 model in a pytorch model"""
weights = tf_model.weights
return load_tf2_weights_in_pytorch_model(
pt_model, weights, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info
)
def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=False, output_loading_info=False):
"""Load TF2.0 symbolic weights in a PyTorch model"""
try:
import tensorflow as tf # noqa: F401
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_state_dict = {tf_weight.name: tf_weight.numpy() for tf_weight in tf_weights}
return load_tf2_state_dict_in_pytorch_model(
pt_model, tf_state_dict, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info
)
def load_tf2_state_dict_in_pytorch_model(pt_model, tf_state_dict, allow_missing_keys=False, output_loading_info=False):
import torch
new_pt_params_dict = {}
current_pt_params_dict = dict(pt_model.named_parameters())
# Make sure we are able to load PyTorch base models as well as derived models (with heads)
# TF models always have a prefix, some of PyTorch models (base ones) don't
start_prefix_to_remove = ""
if not any(s.startswith(pt_model.base_model_prefix) for s in current_pt_params_dict.keys()):
start_prefix_to_remove = pt_model.base_model_prefix + "."
# Build a map from potential PyTorch weight names to TF 2.0 Variables
tf_weights_map = {}
for name, tf_weight in tf_state_dict.items():
pt_name, transpose = convert_tf_weight_name_to_pt_weight_name(
name, start_prefix_to_remove=start_prefix_to_remove, tf_weight_shape=tf_weight.shape
)
tf_weights_map[pt_name] = (tf_weight, transpose)
all_tf_weights = set(tf_weights_map.keys())
loaded_pt_weights_data_ptr = {}
missing_keys_pt = []
for pt_weight_name, pt_weight in current_pt_params_dict.items():
# Handle PyTorch shared weight ()not duplicated in TF 2.0
if pt_weight.data_ptr() in loaded_pt_weights_data_ptr:
new_pt_params_dict[pt_weight_name] = loaded_pt_weights_data_ptr[pt_weight.data_ptr()]
continue
pt_weight_name_to_check = pt_weight_name
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
key_components = pt_weight_name.split(".")
name = None
if key_components[-3::2] == ["parametrizations", "original0"]:
name = key_components[-2] + "_g"
elif key_components[-3::2] == ["parametrizations", "original1"]:
name = key_components[-2] + "_v"
if name is not None:
key_components = key_components[:-3] + [name]
pt_weight_name_to_check = ".".join(key_components)
# Find associated numpy array in pytorch model state dict
if pt_weight_name_to_check not in tf_weights_map:
if allow_missing_keys:
missing_keys_pt.append(pt_weight_name)
continue
raise AttributeError(f"{pt_weight_name} not found in TF 2.0 model")
array, transpose = tf_weights_map[pt_weight_name_to_check]
array = apply_transpose(transpose, array, pt_weight.shape, pt_to_tf=False)
if numpy.isscalar(array):
array = numpy.array(array)
if not is_torch_tensor(array) and not is_numpy_array(array):
array = array.numpy()
if is_numpy_array(array):
# Convert to torch tensor
array = torch.from_numpy(array)
new_pt_params_dict[pt_weight_name] = array
loaded_pt_weights_data_ptr[pt_weight.data_ptr()] = array
all_tf_weights.discard(pt_weight_name)
missing_keys, unexpected_keys = pt_model.load_state_dict(new_pt_params_dict, strict=False)
missing_keys += missing_keys_pt
# Some models may have keys that are not in the state by design, removing them before needlessly warning
# the user.
if pt_model._keys_to_ignore_on_load_missing is not None:
for pat in pt_model._keys_to_ignore_on_load_missing:
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
if pt_model._keys_to_ignore_on_load_unexpected is not None:
for pat in pt_model._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
"Some weights of the TF 2.0 model were not used when initializing the PyTorch model"
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
f" {pt_model.__class__.__name__} from a TF 2.0 model trained on another task or with another architecture"
" (e.g. initializing a BertForSequenceClassification model from a TFBertForPreTraining model).\n- This IS"
f" NOT expected if you are initializing {pt_model.__class__.__name__} from a TF 2.0 model that you expect"
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
" TFBertForSequenceClassification model)."
)
else:
logger.warning(f"All TF 2.0 model weights were used when initializing {pt_model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {pt_model.__class__.__name__} were not initialized from the TF 2.0 model and are newly"
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
" use it for predictions and inference."
)
else:
logger.warning(
f"All the weights of {pt_model.__class__.__name__} were initialized from the TF 2.0 model.\n"
"If your task is similar to the task the model of the checkpoint was trained on, "
f"you can already use {pt_model.__class__.__name__} for predictions without further training."
)
logger.info(f"Weights or buffers not loaded from TF 2.0 model: {all_tf_weights}")
if output_loading_info:
loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys}
return pt_model, loading_info
return pt_model
|