File size: 9,843 Bytes
4c65bff 446af6b 4c65bff 1beee03 4c65bff 446af6b 4c65bff befe33c 4c65bff befe33c 4c65bff befe33c 4c65bff 4943310 4c65bff befe33c 4943310 4c65bff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from io import BytesIO
import io
import random
import requests
import string
import time
from PIL import Image, ImageFilter
import numpy as np
import torch
from dw_pose.main import dwpose
from scipy.ndimage import binary_dilation
from transformers import ViTFeatureExtractor, ViTForImageClassification
import torch.nn.functional as F
import transformers
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
import os
import pydash as _
import boto3
is_production = True
age_detection_model = ViTForImageClassification.from_pretrained(
'nateraw/vit-age-classifier')
age_detection_transforms = ViTFeatureExtractor.from_pretrained(
'nateraw/vit-age-classifier')
REPLICATE_API_KEY = ""
S3_REGION = "fra1"
S3_ACCESS_ID = "0RN7BZXS59HYSBD3VB79"
S3_ACCESS_SECRET = "hfSPgBlWl5jsGHa2xuByVkSpancgVeA2CVQf2EMp"
S3_ENDPOINT_URL = "https://s3.solarcom.ch"
S3_BUCKET_NAME = "pissnelke"
s3_session = boto3.session.Session()
s3 = s3_session.client(
service_name="s3",
region_name=S3_REGION,
aws_access_key_id=S3_ACCESS_ID,
aws_secret_access_key=S3_ACCESS_SECRET,
endpoint_url=S3_ENDPOINT_URL,
)
def find_bounding_box(pil_image):
image_np = np.array(pil_image.convert('L'))
white_pixels = np.argwhere(image_np == 255)
x_min, y_min = np.min(white_pixels, axis=0)
x_max, y_max = np.max(white_pixels, axis=0)
return (y_min, x_min), (y_max, x_max)
def getSizeFromCoords(top_left, bottom_right):
"""
Calculate the width and height of a bounding box.
Parameters:
bounding_box (tuple): A tuple containing two tuples,
the first is the top-left corner (x_min, y_min)
and the second is the bottom-right corner (x_max, y_max).
Returns:
tuple: A tuple containing the width and height of the bounding box.
"""
(x_min, y_min), (x_max, y_max) = top_left, bottom_right
width = x_max - x_min
height = y_max - y_min
return {"width": width, "height": height}
def crop_to_coords(coords1, coords2, pil_image):
top_left_x, top_left_y = coords1
bottom_right_x, bottom_right_y = coords2
cropped_image = pil_image.crop(
(top_left_x, top_left_y, bottom_right_x, bottom_right_y))
return cropped_image
def paste_image_at_coords(dest_image, src_image, coords):
dest_image.paste(src_image, coords)
return dest_image
def resize(width, height, maxStretch):
new_width = width * (maxStretch / max(width, height))
new_height = height * (maxStretch / max(width, height))
return {"width": new_width, "height": new_height}
def get_is_underage(input_pil):
input_pil = input_pil.convert("RGB")
inputs = age_detection_transforms(input_pil, return_tensors='pt')
output = age_detection_model(**inputs)
# Apply softmax to the logits to get probabilities
probabilities = F.softmax(output['logits'], dim=1)
# Get the class with the highest probability
predicted_class = probabilities.argmax().item()
map = {
"0": "0-2",
"1": "3-9",
"2": "10-19",
"3": "20-29",
"4": "30-39",
"5": "40-49",
"6": "50-59",
"7": "60-69",
"8": "more than 70"
}
print("Age:", map[str(predicted_class)], "years old")
if predicted_class < 3:
return True
return False
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16
)
base_pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"redstonehero/epicrealism_pureevolutionv5-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
base_pipe.scheduler = DDIMScheduler.from_config(base_pipe.scheduler.config)
base_pipe = base_pipe.to("cuda")
base_pipe.enable_model_cpu_offload()
base_pipe.safety_checker = None
#base_pipe.enable_xformers_memory_efficient_attention()
pipe_with_tit_slider = _.clone_deep(base_pipe)
pipe_with_tit_slider.load_lora_weights(os.path.join("/repository" if is_production else ".", "models", "breastsizeslideroffset.safetensors"), weight_name="breastsizeslideroffset.safetensors", adapter_name="breastsizeslideroffset")
# pipe_with_small_tits = _.clone_deep(pipe_with_tit_slider)
# pipe_with_small_tits.set_adapters("breastsizeslideroffset", adapter_weights=[-0.8])
# pipe_with_medium_tits = _.clone_deep(base_pipe)
# pipe_with_big_tits = _.clone_deep(pipe_with_tit_slider)
# pipe_with_big_tits.set_adapters("breastsizeslideroffset", adapter_weights=[0.7])
def get_nude(original_pil, original_max_size=2000, generate_max_size=768, positive_prompt="nude girl, pussy, tits", negative_prompt="ugly", steps=20, cfg_scale=7, get_mask_function=None, with_small_tits=False, with_big_tits=False):
try:
exif_data = original_pil._getexif()
orientation_tag = 274 # The Exif tag for orientation
if exif_data is not None and orientation_tag in exif_data:
orientation = exif_data[orientation_tag]
if orientation == 3:
original_pil = original_pil.rotate(180, expand=True)
elif orientation == 6:
original_pil = original_pil.rotate(270, expand=True)
elif orientation == 8:
original_pil = original_pil.rotate(90, expand=True)
except (AttributeError, KeyError, IndexError):
# In case the Exif data is missing or corrupt, continue without rotating
pass
original_max_size = original_max_size or 2000
generate_max_size = generate_max_size or 768
positive_prompt = positive_prompt or "nude girl, pussy, tits"
negative_prompt = negative_prompt or "ugly"
steps = steps or 20
cfg_scale = cfg_scale or 7
small_original_image = original_pil.copy()
small_original_image = small_original_image.convert("RGB") # new
small_original_image.thumbnail((original_max_size, original_max_size))
start_time = time.time()
is_underage = get_is_underage(small_original_image)
print("get_is_underage", time.time() - start_time, "seconds")
if is_underage:
raise Exception("Underage")
person_mask_pil_expanded = get_mask_function(
small_original_image, "person", expand_by=20)
person_coords1, person_coords2 = find_bounding_box(
person_mask_pil_expanded)
size = getSizeFromCoords(person_coords1, person_coords2)
there_height = size["height"]
there_width = size["width"]
# Determine if the image is portrait or landscape
if there_height >= there_width:
# Portrait
there_height_to_width = there_width / there_height
then_height = 768
then_atleast_width = 768 * there_height_to_width
else:
# Landscape
there_width_to_height = there_height / there_width
then_width = 768
then_atleast_height = 768 * there_width_to_height
# Ensure dimensions are multiples of 8
if there_height >= there_width:
then_width = then_atleast_width - (then_atleast_width % 8) + 8
crop_width = there_height * then_width / then_height
crop_height = there_height
else:
then_height = then_atleast_height - (then_atleast_height % 8) + 8
crop_height = there_width * then_height / then_width
crop_width = there_width
# Calculate cropping coordinates
crop_coord_1 = (
person_coords1[0] - (crop_width - size["width"]), person_coords1[1])
crop_coord_2 = person_coords2
if (crop_coord_1[0] < 0):
crop_coord_1 = person_coords1
crop_coord_2 = (
person_coords2[0] + (crop_width - size["width"]), person_coords2[1])
person_cropped_pil = crop_to_coords(
crop_coord_1, crop_coord_2, small_original_image)
expanded_mask_image = get_mask_function(
person_cropped_pil, "bra . blouse . skirt . dress", expand_by=10)
person_cropped_width, person_cropped_height = person_cropped_pil.size
new_size = resize(crop_width, crop_height, generate_max_size)
dwpose_pil = dwpose(person_cropped_pil, 512)
expanded_mask_image_width, expanded_mask_image_height = expanded_mask_image.size
dwpose_pil_resized = dwpose_pil.resize(
(int(expanded_mask_image_width), int(expanded_mask_image_height)))
end_result_images = pipe_with_tit_slider(
positive_prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
eta=1.0,
image=person_cropped_pil,
mask_image=expanded_mask_image,
control_image=dwpose_pil_resized,
num_images_per_prompt=2,
height=round(new_size["height"]),
width=round(new_size["width"]),
cross_attention_kwargs={"scale": -0.8} if with_small_tits else {"scale": 0.7} if with_big_tits else { "scale": 0 }
).images
# Function to create a mask for blurring edges
def create_blurred_edge_mask(image, blur_radius):
mask = Image.new("L", image.size, 0)
mask.paste(255, [blur_radius, blur_radius, mask.width -
blur_radius, mask.height - blur_radius])
return mask.filter(ImageFilter.GaussianBlur(blur_radius))
output_pils = []
# Your existing code
for image in end_result_images:
fit_into_group_image = image.resize(
(person_cropped_width, person_cropped_height))
# Create a mask for the resized image with blurred edges
blur_radius = 10 # You can adjust the radius as needed
mask = create_blurred_edge_mask(fit_into_group_image, blur_radius)
# Paste using the mask for a smoother transition
small_original_image.paste(
fit_into_group_image, (int(crop_coord_1[0]), crop_coord_1[1]), mask)
output_pils.append(small_original_image)
return output_pils
# get all files in ./dataset and get nude
|