File size: 9,843 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446af6b
 
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1beee03
4c65bff
 
 
446af6b
4c65bff
befe33c
 
4c65bff
befe33c
4c65bff
befe33c
 
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4943310
4c65bff
 
 
 
 
 
 
 
 
 
befe33c
4943310
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from io import BytesIO
import io
import random

import requests
import string
import time
from PIL import Image, ImageFilter
import numpy as np
import torch
from dw_pose.main import dwpose
from scipy.ndimage import binary_dilation
from transformers import ViTFeatureExtractor, ViTForImageClassification
import torch.nn.functional as F
import transformers
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
import os
import pydash as _
import boto3

is_production = True

age_detection_model = ViTForImageClassification.from_pretrained(
    'nateraw/vit-age-classifier')
age_detection_transforms = ViTFeatureExtractor.from_pretrained(
    'nateraw/vit-age-classifier')

REPLICATE_API_KEY = ""

S3_REGION = "fra1"
S3_ACCESS_ID = "0RN7BZXS59HYSBD3VB79"
S3_ACCESS_SECRET = "hfSPgBlWl5jsGHa2xuByVkSpancgVeA2CVQf2EMp"
S3_ENDPOINT_URL = "https://s3.solarcom.ch"
S3_BUCKET_NAME = "pissnelke"

s3_session = boto3.session.Session()
s3 = s3_session.client(
    service_name="s3",
    region_name=S3_REGION,
    aws_access_key_id=S3_ACCESS_ID,
    aws_secret_access_key=S3_ACCESS_SECRET,
    endpoint_url=S3_ENDPOINT_URL,
)

def find_bounding_box(pil_image):
    image_np = np.array(pil_image.convert('L'))
    white_pixels = np.argwhere(image_np == 255)
    x_min, y_min = np.min(white_pixels, axis=0)
    x_max, y_max = np.max(white_pixels, axis=0)
    return (y_min, x_min), (y_max, x_max)

def getSizeFromCoords(top_left, bottom_right):
    """
    Calculate the width and height of a bounding box.

    Parameters:
    bounding_box (tuple): A tuple containing two tuples, 
                          the first is the top-left corner (x_min, y_min) 
                          and the second is the bottom-right corner (x_max, y_max).

    Returns:
    tuple: A tuple containing the width and height of the bounding box.
    """
    (x_min, y_min), (x_max, y_max) = top_left, bottom_right
    width = x_max - x_min
    height = y_max - y_min
    return {"width": width, "height": height}


def crop_to_coords(coords1, coords2, pil_image):
    top_left_x, top_left_y = coords1
    bottom_right_x, bottom_right_y = coords2
    cropped_image = pil_image.crop(
        (top_left_x, top_left_y, bottom_right_x, bottom_right_y))
    return cropped_image


def paste_image_at_coords(dest_image, src_image, coords):
    dest_image.paste(src_image, coords)
    return dest_image


def resize(width, height, maxStretch):
    new_width = width * (maxStretch / max(width, height))
    new_height = height * (maxStretch / max(width, height))

    return {"width": new_width, "height": new_height}


def get_is_underage(input_pil):
    input_pil = input_pil.convert("RGB")

    inputs = age_detection_transforms(input_pil, return_tensors='pt')
    output = age_detection_model(**inputs)

    # Apply softmax to the logits to get probabilities
    probabilities = F.softmax(output['logits'], dim=1)

    # Get the class with the highest probability
    predicted_class = probabilities.argmax().item()

    map = {
        "0": "0-2",
        "1": "3-9",
        "2": "10-19",
        "3": "20-29",
        "4": "30-39",
        "5": "40-49",
        "6": "50-59",
        "7": "60-69",
        "8": "more than 70"
    }

    print("Age:", map[str(predicted_class)], "years old")

    if predicted_class < 3:
        return True

    return False


controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16
)
base_pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
    "redstonehero/epicrealism_pureevolutionv5-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
base_pipe.scheduler = DDIMScheduler.from_config(base_pipe.scheduler.config)
base_pipe = base_pipe.to("cuda")
base_pipe.enable_model_cpu_offload()
base_pipe.safety_checker = None
#base_pipe.enable_xformers_memory_efficient_attention()

pipe_with_tit_slider = _.clone_deep(base_pipe)

pipe_with_tit_slider.load_lora_weights(os.path.join("/repository" if is_production else ".", "models", "breastsizeslideroffset.safetensors"), weight_name="breastsizeslideroffset.safetensors", adapter_name="breastsizeslideroffset")

# pipe_with_small_tits = _.clone_deep(pipe_with_tit_slider)
# pipe_with_small_tits.set_adapters("breastsizeslideroffset", adapter_weights=[-0.8])

# pipe_with_medium_tits = _.clone_deep(base_pipe)

# pipe_with_big_tits = _.clone_deep(pipe_with_tit_slider)
# pipe_with_big_tits.set_adapters("breastsizeslideroffset", adapter_weights=[0.7])

def get_nude(original_pil, original_max_size=2000, generate_max_size=768, positive_prompt="nude girl, pussy, tits", negative_prompt="ugly", steps=20, cfg_scale=7, get_mask_function=None, with_small_tits=False, with_big_tits=False):
    try:
        exif_data = original_pil._getexif()
        orientation_tag = 274  # The Exif tag for orientation
        if exif_data is not None and orientation_tag in exif_data:
            orientation = exif_data[orientation_tag]
            if orientation == 3:
                original_pil = original_pil.rotate(180, expand=True)
            elif orientation == 6:
                original_pil = original_pil.rotate(270, expand=True)
            elif orientation == 8:
                original_pil = original_pil.rotate(90, expand=True)
    except (AttributeError, KeyError, IndexError):
        # In case the Exif data is missing or corrupt, continue without rotating
        pass

    original_max_size = original_max_size or 2000
    generate_max_size = generate_max_size or 768
    positive_prompt = positive_prompt or "nude girl, pussy, tits"
    negative_prompt = negative_prompt or "ugly"
    steps = steps or 20
    cfg_scale = cfg_scale or 7

    small_original_image = original_pil.copy()

    small_original_image = small_original_image.convert("RGB")  # new

    small_original_image.thumbnail((original_max_size, original_max_size))

    start_time = time.time()
    is_underage = get_is_underage(small_original_image)
    print("get_is_underage", time.time() - start_time, "seconds")

    if is_underage:
        raise Exception("Underage")

    person_mask_pil_expanded = get_mask_function(
        small_original_image, "person", expand_by=20)

    person_coords1, person_coords2 = find_bounding_box(
        person_mask_pil_expanded)

    size = getSizeFromCoords(person_coords1, person_coords2)

    there_height = size["height"]
    there_width = size["width"]

    # Determine if the image is portrait or landscape
    if there_height >= there_width:
        # Portrait
        there_height_to_width = there_width / there_height
        then_height = 768
        then_atleast_width = 768 * there_height_to_width
    else:
        # Landscape
        there_width_to_height = there_height / there_width
        then_width = 768
        then_atleast_height = 768 * there_width_to_height

    # Ensure dimensions are multiples of 8
    if there_height >= there_width:
        then_width = then_atleast_width - (then_atleast_width % 8) + 8
        crop_width = there_height * then_width / then_height
        crop_height = there_height
    else:
        then_height = then_atleast_height - (then_atleast_height % 8) + 8
        crop_height = there_width * then_height / then_width
        crop_width = there_width

    # Calculate cropping coordinates
    crop_coord_1 = (
        person_coords1[0] - (crop_width - size["width"]), person_coords1[1])
    crop_coord_2 = person_coords2

    if (crop_coord_1[0] < 0):
        crop_coord_1 = person_coords1
        crop_coord_2 = (
            person_coords2[0] + (crop_width - size["width"]), person_coords2[1])

    person_cropped_pil = crop_to_coords(
        crop_coord_1, crop_coord_2, small_original_image)

    expanded_mask_image = get_mask_function(
        person_cropped_pil, "bra . blouse . skirt . dress", expand_by=10)

    person_cropped_width, person_cropped_height = person_cropped_pil.size
    new_size = resize(crop_width, crop_height, generate_max_size)

    dwpose_pil = dwpose(person_cropped_pil, 512)

    expanded_mask_image_width, expanded_mask_image_height = expanded_mask_image.size

    dwpose_pil_resized = dwpose_pil.resize(
        (int(expanded_mask_image_width), int(expanded_mask_image_height)))

    end_result_images = pipe_with_tit_slider(
        positive_prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        eta=1.0,
        image=person_cropped_pil,
        mask_image=expanded_mask_image,
        control_image=dwpose_pil_resized,
        num_images_per_prompt=2,
        height=round(new_size["height"]),
        width=round(new_size["width"]),
        cross_attention_kwargs={"scale": -0.8} if with_small_tits else {"scale": 0.7} if with_big_tits else { "scale": 0 }
    ).images

    # Function to create a mask for blurring edges
    def create_blurred_edge_mask(image, blur_radius):
        mask = Image.new("L", image.size, 0)
        mask.paste(255, [blur_radius, blur_radius, mask.width -
                   blur_radius, mask.height - blur_radius])
        return mask.filter(ImageFilter.GaussianBlur(blur_radius))

    output_pils = []

    # Your existing code
    for image in end_result_images:
        fit_into_group_image = image.resize(
            (person_cropped_width, person_cropped_height))

        # Create a mask for the resized image with blurred edges
        blur_radius = 10  # You can adjust the radius as needed
        mask = create_blurred_edge_mask(fit_into_group_image, blur_radius)

        # Paste using the mask for a smoother transition
        small_original_image.paste(
            fit_into_group_image, (int(crop_coord_1[0]), crop_coord_1[1]), mask)

        output_pils.append(small_original_image)

    return output_pils

# get all files in ./dataset and get nude