from grounded_sam_demo import grounded_sam_demo import numpy as np from PIL import Image from scipy.ndimage import convolve from scipy.ndimage import binary_dilation def get_sd_mask(color_mask_pil, target=(72, 4, 84), tolerance=50): image_array = np.array(color_mask_pil) # Update target based on the number of color channels in the image array target = np.array(list(target) + [255] * (image_array.shape[-1] - len(target))) mask = np.abs(image_array - target) <= tolerance mask = np.all(mask, axis=-1) new_image_array = np.ones_like(image_array) * 255 # Start with white # Apply black where condition met new_image_array[mask] = [0] * image_array.shape[-1] return Image.fromarray(new_image_array) def expand_white_pixels(input_pil, expand_by=1): img_array = np.array(input_pil) is_white = np.all(img_array == 255, axis=-1) kernel = np.ones((2*expand_by+1, 2*expand_by+1), bool) expanded_white = binary_dilation(is_white, structure=kernel) expanded_array = np.where(expanded_white[..., None], 255, img_array) expanded_pil = Image.fromarray(expanded_array.astype('uint8')) return expanded_pil config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py" grounded_checkpoint = "groundingdino_swint_ogc.pth" sam_checkpoint = "sam_hq_vit_h.pth" def just_get_sd_mask(input_pil, text_prompt, padding): print("Doing sam") colored_mask_pil = grounded_sam_demo( input_pil, config_file, grounded_checkpoint, sam_checkpoint, text_prompt) print("doing to white") sd_mask_pil = get_sd_mask(colored_mask_pil) print("expanding white pixels") sd_mask_withpadding_pil = expand_white_pixels(sd_mask_pil, padding) return sd_mask_withpadding_pil