|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gzip |
|
import html |
|
import io |
|
import math |
|
from functools import lru_cache |
|
from typing import Callable, List, Optional |
|
|
|
import ftfy |
|
|
|
import numpy as np |
|
import regex as re |
|
import torch |
|
import torch.nn as nn |
|
from iopath.common.file_io import g_pathmgr |
|
from timm.models.layers import trunc_normal_ |
|
|
|
from models.helpers import cast_if_src_dtype, VerboseNNModule |
|
|
|
|
|
def get_sinusoid_encoding_table(n_position, d_hid): |
|
"""Sinusoid position encoding table""" |
|
|
|
|
|
def get_position_angle_vec(position): |
|
return [ |
|
position / np.power(10000, 2 * (hid_j // 2) / d_hid) |
|
for hid_j in range(d_hid) |
|
] |
|
|
|
sinusoid_table = np.array( |
|
[get_position_angle_vec(pos_i) for pos_i in range(n_position)] |
|
) |
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
|
|
return torch.FloatTensor(sinusoid_table).unsqueeze(0) |
|
|
|
|
|
def interpolate_pos_encoding_2d(target_spatial_size, pos_embed): |
|
N = pos_embed.shape[1] |
|
if N == target_spatial_size: |
|
return pos_embed |
|
dim = pos_embed.shape[-1] |
|
|
|
pos_embed, updated = cast_if_src_dtype(pos_embed, torch.bfloat16, torch.float32) |
|
pos_embed = nn.functional.interpolate( |
|
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute( |
|
0, 3, 1, 2 |
|
), |
|
scale_factor=math.sqrt(target_spatial_size / N), |
|
mode="bicubic", |
|
) |
|
if updated: |
|
pos_embed, _ = cast_if_src_dtype(pos_embed, torch.float32, torch.bfloat16) |
|
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) |
|
return pos_embed |
|
|
|
|
|
def interpolate_pos_encoding( |
|
npatch_per_img, |
|
pos_embed, |
|
patches_layout, |
|
input_shape=None, |
|
first_patch_idx=1, |
|
): |
|
assert first_patch_idx == 0 or first_patch_idx == 1, "there is 1 CLS token or none" |
|
N = pos_embed.shape[1] - first_patch_idx |
|
if npatch_per_img == N: |
|
return pos_embed |
|
|
|
assert ( |
|
patches_layout[-1] == patches_layout[-2] |
|
), "Interpolation of pos embed not supported for non-square layouts" |
|
|
|
class_emb = pos_embed[:, :first_patch_idx] |
|
pos_embed = pos_embed[:, first_patch_idx:] |
|
|
|
if input_shape is None or patches_layout[0] == 1: |
|
|
|
pos_embed = interpolate_pos_encoding_2d(npatch_per_img, pos_embed) |
|
elif patches_layout[0] > 1: |
|
|
|
assert len(input_shape) == 4, "temporal interpolation not supported" |
|
|
|
num_frames = patches_layout[0] |
|
num_spatial_tokens = patches_layout[1] * patches_layout[2] |
|
pos_embed = pos_embed.view(1, num_frames, num_spatial_tokens, -1) |
|
|
|
pos_embed = interpolate_pos_encoding_2d( |
|
npatch_per_img, pos_embed[0, 0, ...].unsqueeze(0) |
|
) |
|
else: |
|
raise ValueError("This type of interpolation isn't implemented") |
|
|
|
return torch.cat((class_emb, pos_embed), dim=1) |
|
|
|
|
|
def _get_pos_embedding( |
|
npatch_per_img, |
|
pos_embed, |
|
patches_layout, |
|
input_shape, |
|
first_patch_idx=1, |
|
): |
|
pos_embed = interpolate_pos_encoding( |
|
npatch_per_img, |
|
pos_embed, |
|
patches_layout, |
|
input_shape=input_shape, |
|
first_patch_idx=first_patch_idx, |
|
) |
|
return pos_embed |
|
|
|
|
|
class PatchEmbedGeneric(nn.Module): |
|
""" |
|
PatchEmbed from Hydra |
|
""" |
|
|
|
def __init__(self, proj_stem, norm_layer: Optional[nn.Module] = None): |
|
super().__init__() |
|
|
|
if len(proj_stem) > 1: |
|
self.proj = nn.Sequential(*proj_stem) |
|
else: |
|
|
|
|
|
self.proj = proj_stem[0] |
|
self.norm_layer = norm_layer |
|
|
|
def get_patch_layout(self, img_size): |
|
with torch.no_grad(): |
|
dummy_img = torch.zeros( |
|
[ |
|
1, |
|
] |
|
+ img_size |
|
) |
|
dummy_out = self.proj(dummy_img) |
|
embed_dim = dummy_out.shape[1] |
|
patches_layout = tuple(dummy_out.shape[2:]) |
|
num_patches = np.prod(patches_layout) |
|
return patches_layout, num_patches, embed_dim |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
|
|
x = x.flatten(2).transpose(1, 2) |
|
if self.norm_layer is not None: |
|
x = self.norm_layer(x) |
|
return x |
|
|
|
|
|
class SpatioTemporalPosEmbeddingHelper(VerboseNNModule): |
|
def __init__( |
|
self, |
|
patches_layout: List, |
|
num_patches: int, |
|
num_cls_tokens: int, |
|
embed_dim: int, |
|
learnable: bool, |
|
) -> None: |
|
super().__init__() |
|
self.num_cls_tokens = num_cls_tokens |
|
self.patches_layout = patches_layout |
|
self.num_patches = num_patches |
|
self.num_tokens = num_cls_tokens + num_patches |
|
self.learnable = learnable |
|
if self.learnable: |
|
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim)) |
|
trunc_normal_(self.pos_embed, std=0.02) |
|
else: |
|
self.register_buffer( |
|
"pos_embed", get_sinusoid_encoding_table(self.num_tokens, embed_dim) |
|
) |
|
|
|
def get_pos_embedding(self, vision_input, all_vision_tokens): |
|
input_shape = vision_input.shape |
|
pos_embed = _get_pos_embedding( |
|
all_vision_tokens.size(1) - self.num_cls_tokens, |
|
pos_embed=self.pos_embed, |
|
patches_layout=self.patches_layout, |
|
input_shape=input_shape, |
|
first_patch_idx=self.num_cls_tokens, |
|
) |
|
return pos_embed |
|
|
|
|
|
class RGBDTPreprocessor(VerboseNNModule): |
|
def __init__( |
|
self, |
|
rgbt_stem: PatchEmbedGeneric, |
|
depth_stem: PatchEmbedGeneric, |
|
img_size: List = (3, 224, 224), |
|
num_cls_tokens: int = 1, |
|
pos_embed_fn: Callable = None, |
|
use_type_embed: bool = False, |
|
init_param_style: str = "openclip", |
|
) -> None: |
|
super().__init__() |
|
stem = rgbt_stem if rgbt_stem is not None else depth_stem |
|
( |
|
self.patches_layout, |
|
self.num_patches, |
|
self.embed_dim, |
|
) = stem.get_patch_layout(img_size) |
|
self.rgbt_stem = rgbt_stem |
|
self.depth_stem = depth_stem |
|
self.use_pos_embed = pos_embed_fn is not None |
|
self.use_type_embed = use_type_embed |
|
self.num_cls_tokens = num_cls_tokens |
|
|
|
if self.use_pos_embed: |
|
self.pos_embedding_helper = pos_embed_fn( |
|
patches_layout=self.patches_layout, |
|
num_cls_tokens=num_cls_tokens, |
|
num_patches=self.num_patches, |
|
embed_dim=self.embed_dim, |
|
) |
|
if self.num_cls_tokens > 0: |
|
self.cls_token = nn.Parameter( |
|
torch.zeros(1, self.num_cls_tokens, self.embed_dim) |
|
) |
|
if self.use_type_embed: |
|
self.type_embed = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) |
|
|
|
self.init_parameters(init_param_style) |
|
|
|
@torch.no_grad() |
|
def init_parameters(self, init_param_style): |
|
if init_param_style == "openclip": |
|
|
|
scale = self.embed_dim**-0.5 |
|
if self.use_pos_embed: |
|
nn.init.normal_(self.pos_embedding_helper.pos_embed) |
|
self.pos_embedding_helper.pos_embed *= scale |
|
|
|
if self.num_cls_tokens > 0: |
|
nn.init.normal_(self.cls_token) |
|
self.cls_token *= scale |
|
elif init_param_style == "vit": |
|
self.cls_token.data.fill_(0) |
|
else: |
|
raise ValueError(f"Unknown init {init_param_style}") |
|
|
|
if self.use_type_embed: |
|
nn.init.normal_(self.type_embed) |
|
|
|
def tokenize_input_and_cls_pos(self, input, stem, mask): |
|
|
|
tokens = stem(input) |
|
assert tokens.ndim == 3 |
|
assert tokens.shape[2] == self.embed_dim |
|
B = tokens.shape[0] |
|
if self.num_cls_tokens > 0: |
|
class_tokens = self.cls_token.expand( |
|
B, -1, -1 |
|
) |
|
tokens = torch.cat((class_tokens, tokens), dim=1) |
|
if self.use_pos_embed: |
|
pos_embed = self.pos_embedding_helper.get_pos_embedding(input, tokens) |
|
tokens = tokens + pos_embed |
|
if self.use_type_embed: |
|
tokens = tokens + self.type_embed.expand(B, -1, -1) |
|
return tokens |
|
|
|
def forward(self, vision=None, depth=None, patch_mask=None): |
|
if patch_mask is not None: |
|
raise NotImplementedError() |
|
|
|
if vision is not None: |
|
vision_tokens = self.tokenize_input_and_cls_pos( |
|
vision, self.rgbt_stem, patch_mask |
|
) |
|
|
|
if depth is not None: |
|
depth_tokens = self.tokenize_input_and_cls_pos( |
|
depth, self.depth_stem, patch_mask |
|
) |
|
|
|
|
|
if vision is not None and depth is not None: |
|
final_tokens = vision_tokens + depth_tokens |
|
else: |
|
final_tokens = vision_tokens if vision is not None else depth_tokens |
|
return_dict = { |
|
"trunk": { |
|
"tokens": final_tokens, |
|
}, |
|
"head": {}, |
|
} |
|
return return_dict |
|
|
|
|
|
class AudioPreprocessor(RGBDTPreprocessor): |
|
def __init__(self, audio_stem: PatchEmbedGeneric, **kwargs) -> None: |
|
super().__init__(rgbt_stem=audio_stem, depth_stem=None, **kwargs) |
|
|
|
def forward(self, audio=None): |
|
return super().forward(vision=audio) |
|
|
|
|
|
class ThermalPreprocessor(RGBDTPreprocessor): |
|
def __init__(self, thermal_stem: PatchEmbedGeneric, **kwargs) -> None: |
|
super().__init__(rgbt_stem=thermal_stem, depth_stem=None, **kwargs) |
|
|
|
def forward(self, thermal=None): |
|
return super().forward(vision=thermal) |
|
|
|
|
|
def build_causal_attention_mask(context_length): |
|
|
|
|
|
mask = torch.empty(context_length, context_length, requires_grad=False) |
|
mask.fill_(float("-inf")) |
|
mask.triu_(1) |
|
return mask |
|
|
|
|
|
class TextPreprocessor(VerboseNNModule): |
|
def __init__( |
|
self, |
|
vocab_size: int, |
|
context_length: int, |
|
embed_dim: int, |
|
causal_masking: bool, |
|
supply_seq_len_to_head: bool = True, |
|
num_cls_tokens: int = 0, |
|
init_param_style: str = "openclip", |
|
) -> None: |
|
super().__init__() |
|
self.vocab_size = vocab_size |
|
self.context_length = context_length |
|
self.token_embedding = nn.Embedding(vocab_size, embed_dim) |
|
self.pos_embed = nn.Parameter( |
|
torch.empty(1, self.context_length + num_cls_tokens, embed_dim) |
|
) |
|
self.causal_masking = causal_masking |
|
if self.causal_masking: |
|
mask = build_causal_attention_mask(self.context_length) |
|
|
|
self.register_buffer("mask", mask) |
|
|
|
self.supply_seq_len_to_head = supply_seq_len_to_head |
|
self.num_cls_tokens = num_cls_tokens |
|
self.embed_dim = embed_dim |
|
if num_cls_tokens > 0: |
|
assert self.causal_masking is False, "Masking + CLS token isn't implemented" |
|
self.cls_token = nn.Parameter( |
|
torch.zeros(1, self.num_cls_tokens, embed_dim) |
|
) |
|
|
|
self.init_parameters(init_param_style) |
|
|
|
@torch.no_grad() |
|
def init_parameters(self, init_param_style="openclip"): |
|
|
|
nn.init.normal_(self.token_embedding.weight, std=0.02) |
|
nn.init.normal_(self.pos_embed, std=0.01) |
|
|
|
if init_param_style == "openclip": |
|
|
|
scale = self.embed_dim**-0.5 |
|
if self.num_cls_tokens > 0: |
|
nn.init.normal_(self.cls_token) |
|
self.cls_token *= scale |
|
elif init_param_style == "vit": |
|
self.cls_token.data.fill_(0) |
|
else: |
|
raise ValueError(f"Unknown init {init_param_style}") |
|
|
|
def forward(self, text): |
|
|
|
text_tokens = self.token_embedding(text) |
|
|
|
if self.num_cls_tokens > 0: |
|
B = text_tokens.shape[0] |
|
class_tokens = self.cls_token.expand( |
|
B, -1, -1 |
|
) |
|
text_tokens = torch.cat((class_tokens, text_tokens), dim=1) |
|
text_tokens = text_tokens + self.pos_embed |
|
return_dict = { |
|
"trunk": { |
|
"tokens": text_tokens, |
|
}, |
|
"head": {}, |
|
} |
|
|
|
if self.supply_seq_len_to_head: |
|
text_lengths = text.argmax(dim=-1) |
|
return_dict["head"] = { |
|
"seq_len": text_lengths, |
|
} |
|
if self.causal_masking: |
|
return_dict["trunk"].update({"attn_mask": self.mask}) |
|
return return_dict |
|
|
|
|
|
class Im2Video(nn.Module): |
|
"""Convert an image into a trivial video.""" |
|
|
|
def __init__(self, time_dim=2): |
|
super().__init__() |
|
self.time_dim = time_dim |
|
|
|
def forward(self, x): |
|
if x.ndim == 4: |
|
|
|
return x.unsqueeze(self.time_dim) |
|
elif x.ndim == 5: |
|
return x |
|
else: |
|
raise ValueError(f"Dimension incorrect {x.shape}") |
|
|
|
|
|
class PadIm2Video(Im2Video): |
|
def __init__(self, ntimes, pad_type, time_dim=2): |
|
super().__init__(time_dim=time_dim) |
|
assert ntimes > 0 |
|
assert pad_type in ["zero", "repeat"] |
|
self.ntimes = ntimes |
|
self.pad_type = pad_type |
|
|
|
def forward(self, x): |
|
x = super().forward(x) |
|
if x.shape[self.time_dim] == 1: |
|
if self.pad_type == "repeat": |
|
new_shape = [1] * len(x.shape) |
|
new_shape[self.time_dim] = self.ntimes |
|
x = x.repeat(new_shape) |
|
elif self.pad_type == "zero": |
|
padarg = [0, 0] * len(x.shape) |
|
padarg[2 * self.time_dim + 1] = self.ntimes - x.shape[self.time_dim] |
|
x = nn.functional.pad(x, padarg) |
|
return x |
|
|
|
|
|
|
|
@lru_cache() |
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a signficant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = ( |
|
list(range(ord("!"), ord("~") + 1)) |
|
+ list(range(ord("¡"), ord("¬") + 1)) |
|
+ list(range(ord("®"), ord("ÿ") + 1)) |
|
) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8 + n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
def get_pairs(word): |
|
"""Return set of symbol pairs in a word. |
|
Word is represented as tuple of symbols (symbols being variable-length strings). |
|
""" |
|
pairs = set() |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
pairs.add((prev_char, char)) |
|
prev_char = char |
|
return pairs |
|
|
|
|
|
def basic_clean(text): |
|
text = ftfy.fix_text(text) |
|
text = html.unescape(html.unescape(text)) |
|
return text.strip() |
|
|
|
|
|
def whitespace_clean(text): |
|
text = re.sub(r"\s+", " ", text) |
|
text = text.strip() |
|
return text |
|
|
|
|
|
class SimpleTokenizer(object): |
|
def __init__(self, bpe_path: str, context_length=77): |
|
self.byte_encoder = bytes_to_unicode() |
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |
|
|
|
with g_pathmgr.open(bpe_path, "rb") as fh: |
|
bpe_bytes = io.BytesIO(fh.read()) |
|
merges = gzip.open(bpe_bytes).read().decode("utf-8").split("\n") |
|
merges = merges[1 : 49152 - 256 - 2 + 1] |
|
merges = [tuple(merge.split()) for merge in merges] |
|
vocab = list(bytes_to_unicode().values()) |
|
vocab = vocab + [v + "</w>" for v in vocab] |
|
for merge in merges: |
|
vocab.append("".join(merge)) |
|
vocab.extend(["<|startoftext|>", "<|endoftext|>"]) |
|
self.encoder = dict(zip(vocab, range(len(vocab)))) |
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
self.bpe_ranks = dict(zip(merges, range(len(merges)))) |
|
self.cache = { |
|
"<|startoftext|>": "<|startoftext|>", |
|
"<|endoftext|>": "<|endoftext|>", |
|
} |
|
self.pat = re.compile( |
|
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", |
|
re.IGNORECASE, |
|
) |
|
self.context_length = context_length |
|
|
|
def bpe(self, token): |
|
if token in self.cache: |
|
return self.cache[token] |
|
word = tuple(token[:-1]) + (token[-1] + "</w>",) |
|
pairs = get_pairs(word) |
|
|
|
if not pairs: |
|
return token + "</w>" |
|
|
|
while True: |
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) |
|
if bigram not in self.bpe_ranks: |
|
break |
|
first, second = bigram |
|
new_word = [] |
|
i = 0 |
|
while i < len(word): |
|
try: |
|
j = word.index(first, i) |
|
new_word.extend(word[i:j]) |
|
i = j |
|
except: |
|
new_word.extend(word[i:]) |
|
break |
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: |
|
new_word.append(first + second) |
|
i += 2 |
|
else: |
|
new_word.append(word[i]) |
|
i += 1 |
|
new_word = tuple(new_word) |
|
word = new_word |
|
if len(word) == 1: |
|
break |
|
else: |
|
pairs = get_pairs(word) |
|
word = " ".join(word) |
|
self.cache[token] = word |
|
return word |
|
|
|
def encode(self, text): |
|
bpe_tokens = [] |
|
text = whitespace_clean(basic_clean(text)).lower() |
|
for token in re.findall(self.pat, text): |
|
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8")) |
|
bpe_tokens.extend( |
|
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ") |
|
) |
|
return bpe_tokens |
|
|
|
def decode(self, tokens): |
|
text = "".join([self.decoder[token] for token in tokens]) |
|
text = ( |
|
bytearray([self.byte_decoder[c] for c in text]) |
|
.decode("utf-8", errors="replace") |
|
.replace("</w>", " ") |
|
) |
|
return text |
|
|
|
def __call__(self, texts, context_length=None): |
|
if not context_length: |
|
context_length = self.context_length |
|
|
|
if isinstance(texts, str): |
|
texts = [texts] |
|
|
|
sot_token = self.encoder["<|startoftext|>"] |
|
eot_token = self.encoder["<|endoftext|>"] |
|
all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts] |
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) |
|
|
|
for i, tokens in enumerate(all_tokens): |
|
tokens = tokens[:context_length] |
|
result[i, : len(tokens)] = torch.tensor(tokens) |
|
|
|
if len(result) == 1: |
|
return result[0] |
|
return result |
|
|
|
|
|
class IMUPreprocessor(VerboseNNModule): |
|
def __init__( |
|
self, |
|
kernel_size: int, |
|
imu_stem: PatchEmbedGeneric, |
|
embed_dim: int, |
|
img_size: List = (6, 2000), |
|
num_cls_tokens: int = 1, |
|
pos_embed_fn: Callable = None, |
|
init_param_style: str = "openclip", |
|
) -> None: |
|
super().__init__() |
|
stem = imu_stem |
|
self.imu_stem = imu_stem |
|
self.embed_dim = embed_dim |
|
self.use_pos_embed = pos_embed_fn is not None |
|
self.num_cls_tokens = num_cls_tokens |
|
self.kernel_size = kernel_size |
|
self.pos_embed = nn.Parameter( |
|
torch.empty(1, (img_size[1] // kernel_size) + num_cls_tokens, embed_dim) |
|
) |
|
|
|
if self.num_cls_tokens > 0: |
|
self.cls_token = nn.Parameter( |
|
torch.zeros(1, self.num_cls_tokens, self.embed_dim) |
|
) |
|
|
|
self.init_parameters(init_param_style) |
|
|
|
@torch.no_grad() |
|
def init_parameters(self, init_param_style): |
|
nn.init.normal_(self.pos_embed, std=0.01) |
|
|
|
if init_param_style == "openclip": |
|
|
|
scale = self.embed_dim**-0.5 |
|
|
|
if self.num_cls_tokens > 0: |
|
nn.init.normal_(self.cls_token) |
|
self.cls_token *= scale |
|
elif init_param_style == "vit": |
|
self.cls_token.data.fill_(0) |
|
else: |
|
raise ValueError(f"Unknown init {init_param_style}") |
|
|
|
def tokenize_input_and_cls_pos(self, input, stem): |
|
|
|
tokens = stem.norm_layer(stem.proj(input)) |
|
assert tokens.ndim == 3 |
|
assert tokens.shape[2] == self.embed_dim |
|
B = tokens.shape[0] |
|
if self.num_cls_tokens > 0: |
|
class_tokens = self.cls_token.expand( |
|
B, -1, -1 |
|
) |
|
tokens = torch.cat((class_tokens, tokens), dim=1) |
|
if self.use_pos_embed: |
|
tokens = tokens + self.pos_embed |
|
return tokens |
|
|
|
def forward(self, imu): |
|
|
|
imu = imu.unfold( |
|
-1, |
|
self.kernel_size, |
|
self.kernel_size, |
|
).permute(0, 2, 1, 3) |
|
imu = imu.reshape(imu.size(0), imu.size(1), -1) |
|
|
|
imu_tokens = self.tokenize_input_and_cls_pos( |
|
imu, |
|
self.imu_stem, |
|
) |
|
|
|
return_dict = { |
|
"trunk": { |
|
"tokens": imu_tokens, |
|
}, |
|
"head": {}, |
|
} |
|
return return_dict |
|
|