nervn / gradio_app.py
mart9992's picture
m
b793f0c
raw
history blame
15.6 kB
import os
import random
import cv2
from scipy import ndimage
import gradio as gr
import argparse
import litellm
import numpy as np
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
import numpy as np
# diffusers
import torch
from diffusers import StableDiffusionInpaintPipeline
# BLIP
from transformers import BlipProcessor, BlipForConditionalGeneration
import openai
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
full_img = None
# for ann in sorted_anns:
for i in range(len(sorted_anns)):
ann = anns[i]
m = ann['segmentation']
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
map[m != 0] = i + 1
color_mask = np.random.random((1, 3)).tolist()[0]
full_img[m != 0] = color_mask
full_img = full_img*255
# anno encoding from https://github.com/LUSSeg/ImageNet-S
res = np.zeros((map.shape[0], map.shape[1], 3))
res[:, :, 0] = map % 256
res[:, :, 1] = map // 256
res.astype(np.float32)
full_img = Image.fromarray(np.uint8(full_img))
return full_img, res
def generate_caption(processor, blip_model, raw_image):
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
out = blip_model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo", openai_api_key=''):
openai.api_key = openai_api_key
openai.api_base = 'https://closeai.deno.dev/v1'
prompt = [
{
'role': 'system',
'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
f'List the nouns in singular form. Split them by "{split} ". ' + \
f'Caption: {caption}.'
}
]
response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
reply = response['choices'][0]['message']['content']
# sometimes return with "noun: xxx, xxx, xxx"
tags = reply.split(':')[-1].strip()
return tags
def transform_image(image_pil):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def draw_mask(mask, draw, random_color=False):
if random_color:
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 153)
else:
color = (30, 144, 255, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def draw_box(box, draw, label):
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=2)
if label:
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((box[0], box[1]), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (box[0], box[1], w + box[0], box[1] + h)
draw.rectangle(bbox, fill=color)
draw.text((box[0], box[1]), str(label), fill="white")
draw.text((box[0], box[1]), label)
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint='sam_vit_h_4b8939.pth'
output_dir="outputs"
device="cuda"
blip_processor = None
blip_model = None
groundingdino_model = None
sam_predictor = None
sam_automask_generator = None
inpaint_pipeline = None
def run_grounded_sam(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode, scribble_mode, openai_api_key):
global blip_processor, blip_model, groundingdino_model, sam_predictor, sam_automask_generator, inpaint_pipeline
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image = input_image["image"]
scribble = input_image["mask"]
size = image.size # w, h
if sam_predictor is None:
# initialize SAM
assert sam_checkpoint, 'sam_checkpoint is not found!'
sam = build_sam(checkpoint=sam_checkpoint)
sam.to(device=device)
sam_predictor = SamPredictor(sam)
sam_automask_generator = SamAutomaticMaskGenerator(sam)
if groundingdino_model is None:
groundingdino_model = load_model(config_file, ckpt_filenmae, device=device)
image_pil = image.convert("RGB")
image = np.array(image_pil)
if task_type == 'scribble':
sam_predictor.set_image(image)
scribble = scribble.convert("RGB")
scribble = np.array(scribble)
scribble = scribble.transpose(2, 1, 0)[0]
# 将连通域进行标记
labeled_array, num_features = ndimage.label(scribble >= 255)
# 计算每个连通域的质心
centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
centers = np.array(centers)
point_coords = torch.from_numpy(centers)
point_coords = sam_predictor.transform.apply_coords_torch(point_coords, image.shape[:2])
point_coords = point_coords.unsqueeze(0).to(device)
point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device)
if scribble_mode == 'split':
point_coords = point_coords.permute(1, 0, 2)
point_labels = point_labels.permute(1, 0)
masks, _, _ = sam_predictor.predict_torch(
point_coords=point_coords if len(point_coords) > 0 else None,
point_labels=point_labels if len(point_coords) > 0 else None,
mask_input = None,
boxes = None,
multimask_output = False,
)
elif task_type == 'automask':
masks = sam_automask_generator.generate(image)
else:
transformed_image = transform_image(image_pil)
if task_type == 'automatic':
# generate caption and tags
# use Tag2Text can generate better captions
# https://huggingface.co/spaces/xinyu1205/Tag2Text
# but there are some bugs...
blip_processor = blip_processor or BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
blip_model = blip_model or BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
text_prompt = generate_caption(blip_processor, blip_model, image_pil)
if len(openai_api_key) > 0:
text_prompt = generate_tags(text_prompt, split=",", openai_api_key=openai_api_key)
print(f"Caption: {text_prompt}")
# run grounding dino model
boxes_filt, scores, pred_phrases = get_grounding_output(
groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold
)
# process boxes
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic':
sam_predictor.set_image(image)
if task_type == 'automatic':
# use NMS to handle overlapped boxes
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
print(f"After NMS: {boxes_filt.shape[0]} boxes")
print(f"Revise caption with number: {text_prompt}")
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
masks, _, _ = sam_predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes,
multimask_output = False,
)
if task_type == 'det':
image_draw = ImageDraw.Draw(image_pil)
for box, label in zip(boxes_filt, pred_phrases):
draw_box(box, image_draw, label)
return [image_pil]
elif task_type == 'automask':
full_img, res = show_anns(masks)
return [full_img]
elif task_type == 'scribble':
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
for mask in masks:
draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True)
image_pil = image_pil.convert('RGBA')
image_pil.alpha_composite(mask_image)
return [image_pil, mask_image]
elif task_type == 'seg' or task_type == 'automatic':
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
for mask in masks:
draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True)
image_draw = ImageDraw.Draw(image_pil)
for box, label in zip(boxes_filt, pred_phrases):
draw_box(box, image_draw, label)
if task_type == 'automatic':
image_draw.text((10, 10), text_prompt, fill='black')
image_pil = image_pil.convert('RGBA')
image_pil.alpha_composite(mask_image)
return [image_pil, mask_image]
elif task_type == 'inpainting':
assert inpaint_prompt, 'inpaint_prompt is not found!'
# inpainting pipeline
if inpaint_mode == 'merge':
masks = torch.sum(masks, dim=0).unsqueeze(0)
masks = torch.where(masks > 0, True, False)
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
mask_pil = Image.fromarray(mask)
if inpaint_pipeline is None:
inpaint_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
)
inpaint_pipeline = inpaint_pipeline.to("cuda")
image = inpaint_pipeline(prompt=inpaint_prompt, image=image_pil.resize((512, 512)), mask_image=mask_pil.resize((512, 512))).images[0]
image = image.resize(size)
return [image, mask_pil]
else:
print("task_type:{} error!".format(task_type))
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
parser.add_argument('--port', type=int, default=7589, help='port to run the server')
parser.add_argument('--no-gradio-queue', action="store_true", help='path to the SAM checkpoint')
args = parser.parse_args()
print(args)
block = gr.Blocks()
if not args.no_gradio_queue:
block = block.queue()
with block:
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil", value="assets/demo1.jpg", tool="sketch")
task_type = gr.Dropdown(["scribble", "automask", "det", "seg", "inpainting", "automatic"], value="automatic", label="task_type")
text_prompt = gr.Textbox(label="Text Prompt")
inpaint_prompt = gr.Textbox(label="Inpaint Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.05
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
)
iou_threshold = gr.Slider(
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.05
)
inpaint_mode = gr.Dropdown(["merge", "first"], value="merge", label="inpaint_mode")
scribble_mode = gr.Dropdown(["merge", "split"], value="split", label="scribble_mode")
openai_api_key= gr.Textbox(label="(Optional)OpenAI key, enable chatgpt")
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(preview=True, grid=2, object_fit="scale-down")
run_button.click(fn=run_grounded_sam, inputs=[
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode, scribble_mode, openai_api_key], outputs=gallery)
block.queue(concurrency_count=100)
block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)