|
import cv2 |
|
import PIL |
|
import requests |
|
import numpy as np |
|
from lama_cleaner.model.lama import LaMa |
|
from lama_cleaner.schema import Config |
|
|
|
|
|
def download_image(url): |
|
image = PIL.Image.open(requests.get(url, stream=True).raw) |
|
image = PIL.ImageOps.exif_transpose(image) |
|
image = image.convert("RGB") |
|
return image |
|
|
|
|
|
img_url = "https://raw.githubusercontent.com/Sanster/lama-cleaner/main/assets/dog.jpg" |
|
mask_url = "https://user-images.githubusercontent.com/3998421/202105351-9fcc4bf8-129d-461a-8524-92e4caad431f.png" |
|
|
|
image = np.asarray(download_image(img_url)) |
|
mask = np.asarray(download_image(mask_url).convert("L")) |
|
|
|
|
|
model = LaMa("cpu") |
|
result = model(image, mask, Config(hd_strategy="Original", ldm_steps=20, hd_strategy_crop_margin=128, hd_strategy_crop_trigger_size=800, hd_strategy_resize_limit=800)) |
|
cv2.imwrite("lama_inpaint_demo.jpg", result) |