File size: 9,748 Bytes
b793f0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
#!/usr/bin/env python3
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Code modified from
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py ;
# https://github.com/facebookresearch/deit/blob/main/models.py
# and https://github.com/facebookresearch/vissl/blob/main/vissl/models/trunks/vision_transformer.py
import copy
import fnmatch
import logging
from functools import partial
from typing import Callable, List
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, trunc_normal_
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version,
# can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class MultiheadAttention(nn.MultiheadAttention):
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
return super().forward(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
class ViTAttention(Attention):
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
assert attn_mask is None
return super().forward(x)
class BlockWithMasking(nn.Module):
def __init__(
self,
dim: int,
attn_target: Callable,
mlp_ratio: int = 4,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
ffn_dropout_rate: float = 0.0,
drop_path: float = 0.0,
layer_scale_type: str = None,
layer_scale_init_value: float = 1e-4,
):
super().__init__()
assert not isinstance(
attn_target, nn.Module
), "attn_target should be a Callable. Otherwise attn_target is shared across blocks!"
self.attn = attn_target()
if drop_path > 0.0:
self.drop_path = DropPath(drop_path)
else:
self.drop_path = nn.Identity()
self.norm_1 = norm_layer(dim)
mlp_hidden_dim = int(mlp_ratio * dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=ffn_dropout_rate,
)
self.norm_2 = norm_layer(dim)
self.layer_scale_type = layer_scale_type
if self.layer_scale_type is not None:
assert self.layer_scale_type in [
"per_channel",
"scalar",
], f"Found Layer scale type {self.layer_scale_type}"
if self.layer_scale_type == "per_channel":
# one gamma value per channel
gamma_shape = [1, 1, dim]
elif self.layer_scale_type == "scalar":
# single gamma value for all channels
gamma_shape = [1, 1, 1]
# two gammas: for each part of the fwd in the encoder
self.layer_scale_gamma1 = nn.Parameter(
torch.ones(size=gamma_shape) * layer_scale_init_value,
requires_grad=True,
)
self.layer_scale_gamma2 = nn.Parameter(
torch.ones(size=gamma_shape) * layer_scale_init_value,
requires_grad=True,
)
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
if self.layer_scale_type is None:
x = x + self.drop_path(self.attn(self.norm_1(x), attn_mask))
x = x + self.drop_path(self.mlp(self.norm_2(x)))
else:
x = (
x
+ self.drop_path(self.attn(self.norm_1(x), attn_mask))
* self.layer_scale_gamma1
)
x = x + self.drop_path(self.mlp(self.norm_2(x))) * self.layer_scale_gamma2
return x
_LAYER_NORM = partial(nn.LayerNorm, eps=1e-6)
class SimpleTransformer(nn.Module):
def __init__(
self,
attn_target: Callable,
embed_dim: int,
num_blocks: int,
block: Callable = BlockWithMasking,
pre_transformer_layer: Callable = None,
post_transformer_layer: Callable = None,
drop_path_rate: float = 0.0,
drop_path_type: str = "progressive",
norm_layer: Callable = _LAYER_NORM,
mlp_ratio: int = 4,
ffn_dropout_rate: float = 0.0,
layer_scale_type: str = None, # from cait; possible values are None, "per_channel", "scalar"
layer_scale_init_value: float = 1e-4, # from cait; float
weight_init_style: str = "jax", # possible values jax or pytorch
):
"""
Simple Transformer with the following features
1. Supports masked attention
2. Supports DropPath
3. Supports LayerScale
4. Supports Dropout in Attention and FFN
5. Makes few assumptions about the input except that it is a Tensor
"""
super().__init__()
self.pre_transformer_layer = pre_transformer_layer
if drop_path_type == "progressive":
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_blocks)]
elif drop_path_type == "uniform":
dpr = [drop_path_rate for i in range(num_blocks)]
else:
raise ValueError(f"Unknown drop_path_type: {drop_path_type}")
self.blocks = nn.Sequential(
*[
block(
dim=embed_dim,
attn_target=attn_target,
mlp_ratio=mlp_ratio,
ffn_dropout_rate=ffn_dropout_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
layer_scale_type=layer_scale_type,
layer_scale_init_value=layer_scale_init_value,
)
for i in range(num_blocks)
]
)
self.post_transformer_layer = post_transformer_layer
self.weight_init_style = weight_init_style
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
if self.weight_init_style == "jax":
# Based on MAE and official Jax ViT implementation
torch.nn.init.xavier_uniform_(m.weight)
elif self.weight_init_style == "pytorch":
# PyTorch ViT uses trunc_normal_
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(
self,
tokens: torch.Tensor,
attn_mask: torch.Tensor = None,
use_checkpoint: bool = False,
checkpoint_every_n: int = 1,
checkpoint_blk_ids: List[int] = None,
):
"""
Inputs
- tokens: data of shape N x L x D (or L x N x D depending on the attention implementation)
- attn: mask of shape L x L
Output
- x: data of shape N x L x D (or L x N x D depending on the attention implementation)
"""
if self.pre_transformer_layer:
tokens = self.pre_transformer_layer(tokens)
if use_checkpoint and checkpoint_blk_ids is None:
checkpoint_blk_ids = [
blk_id
for blk_id in range(len(self.blocks))
if blk_id % checkpoint_every_n == 0
]
if checkpoint_blk_ids:
checkpoint_blk_ids = set(checkpoint_blk_ids)
for blk_id, blk in enumerate(self.blocks):
if use_checkpoint and blk_id in checkpoint_blk_ids:
tokens = checkpoint.checkpoint(
blk, tokens, attn_mask, use_reentrant=False
)
else:
tokens = blk(tokens, attn_mask=attn_mask)
if self.post_transformer_layer:
tokens = self.post_transformer_layer(tokens)
return tokens
|