File size: 8,138 Bytes
b793f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import os
import copy

import numpy as np
import json
import torch
from PIL import Image, ImageDraw, ImageFont

# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

# segment anything
from segment_anything import (
    sam_model_registry,
    sam_hq_model_registry,
    SamPredictor
)
import cv2
import numpy as np
import matplotlib.pyplot as plt


def load_image(image_path):
    # load image
    image_pil = Image.open(image_path).convert("RGB")  # load image

    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image_pil, image


def load_model(model_config_path, model_checkpoint_path, device):
    args = SLConfig.fromfile(model_config_path)
    args.device = device
    model = build_model(args)
    checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
    load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
    print(load_res)
    _ = model.eval()
    return model


def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."
    model = model.to(device)
    image = image.to(device)
    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
    logits.shape[0]

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4
    logits_filt.shape[0]

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    # build pred
    pred_phrases = []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
        if with_logits:
            pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
        else:
            pred_phrases.append(pred_phrase)

    return boxes_filt, pred_phrases

def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)


def show_box(box, ax, label):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
    ax.text(x0, y0, label)


def save_mask_data(output_dir, mask_list, box_list, label_list):
    value = 0  # 0 for background

    mask_img = torch.zeros(mask_list.shape[-2:])
    for idx, mask in enumerate(mask_list):
        mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
    plt.figure(figsize=(10, 10))
    plt.imshow(mask_img.numpy())
    plt.axis('off')
    plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)

    json_data = [{
        'value': value,
        'label': 'background'
    }]
    for label, box in zip(label_list, box_list):
        value += 1
        name, logit = label.split('(')
        logit = logit[:-1] # the last is ')'
        json_data.append({
            'value': value,
            'label': name,
            'logit': float(logit),
            'box': box.numpy().tolist(),
        })
    with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
        json.dump(json_data, f)


if __name__ == "__main__":

    parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
    parser.add_argument("--config", type=str, required=True, help="path to config file")
    parser.add_argument(
        "--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
    )
    parser.add_argument(
        "--sam_version", type=str, default="vit_h", required=False, help="SAM ViT version: vit_b / vit_l / vit_h"
    )
    parser.add_argument(
        "--sam_checkpoint", type=str, required=False, help="path to sam checkpoint file"
    )
    parser.add_argument(
        "--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file"
    )
    parser.add_argument(
        "--use_sam_hq", action="store_true", help="using sam-hq for prediction"
    )
    parser.add_argument("--input_image", type=str, required=True, help="path to image file")
    parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
    parser.add_argument(
        "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
    )

    parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
    parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")

    parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
    args = parser.parse_args()

    # cfg
    config_file = args.config  # change the path of the model config file
    grounded_checkpoint = args.grounded_checkpoint  # change the path of the model
    sam_version = args.sam_version
    sam_checkpoint = args.sam_checkpoint
    sam_hq_checkpoint = args.sam_hq_checkpoint
    use_sam_hq = args.use_sam_hq
    image_path = args.input_image
    text_prompt = args.text_prompt
    output_dir = args.output_dir
    box_threshold = args.box_threshold
    text_threshold = args.text_threshold
    device = args.device

    # make dir
    os.makedirs(output_dir, exist_ok=True)
    # load image
    image_pil, image = load_image(image_path)
    # load model
    model = load_model(config_file, grounded_checkpoint, device=device)

    # visualize raw image
    image_pil.save(os.path.join(output_dir, "raw_image.jpg"))

    # run grounding dino model
    boxes_filt, pred_phrases = get_grounding_output(
        model, image, text_prompt, box_threshold, text_threshold, device=device
    )

    # initialize SAM
    if use_sam_hq:
        predictor = SamPredictor(sam_hq_model_registry[sam_version](checkpoint=sam_hq_checkpoint).to(device))
    else:
        predictor = SamPredictor(sam_model_registry[sam_version](checkpoint=sam_checkpoint).to(device))
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    predictor.set_image(image)

    size = image_pil.size
    H, W = size[1], size[0]
    for i in range(boxes_filt.size(0)):
        boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
        boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
        boxes_filt[i][2:] += boxes_filt[i][:2]

    boxes_filt = boxes_filt.cpu()
    transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)

    masks, _, _ = predictor.predict_torch(
        point_coords = None,
        point_labels = None,
        boxes = transformed_boxes.to(device),
        multimask_output = False,
    )

    # draw output image
    plt.figure(figsize=(10, 10))
    plt.imshow(image)
    for mask in masks:
        show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
    for box, label in zip(boxes_filt, pred_phrases):
        show_box(box.numpy(), plt.gca(), label)

    plt.axis('off')
    plt.savefig(
        os.path.join(output_dir, "grounded_sam_output.jpg"),
        bbox_inches="tight", dpi=300, pad_inches=0.0
    )

    save_mask_data(output_dir, masks, boxes_filt, pred_phrases)