File size: 8,514 Bytes
b793f0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
from functools import partial
import numpy as np
tv = None
try:
import cumm.tensorview as tv
except:
pass
def mask_points_by_range(points, limit_range):
mask = (points[:, 0] >= limit_range[0]) & (points[:, 0] <= limit_range[3]) \
& (points[:, 1] >= limit_range[1]) & (points[:, 1] <= limit_range[4])
return mask
class VoxelGeneratorWrapper():
def __init__(self, vsize_xyz, coors_range_xyz, num_point_features, max_num_points_per_voxel, max_num_voxels):
try:
from spconv.utils import VoxelGeneratorV2 as VoxelGenerator
self.spconv_ver = 1
except:
try:
from spconv.utils import VoxelGenerator
self.spconv_ver = 1
except:
from spconv.utils import Point2VoxelCPU3d as VoxelGenerator
self.spconv_ver = 2
if self.spconv_ver == 1:
self._voxel_generator = VoxelGenerator(
voxel_size=vsize_xyz,
point_cloud_range=coors_range_xyz,
max_num_points=max_num_points_per_voxel,
max_voxels=max_num_voxels
)
else:
self._voxel_generator = VoxelGenerator(
vsize_xyz=vsize_xyz,
coors_range_xyz=coors_range_xyz,
num_point_features=num_point_features,
max_num_points_per_voxel=max_num_points_per_voxel,
max_num_voxels=max_num_voxels
)
def generate(self, points):
if self.spconv_ver == 1:
voxel_output = self._voxel_generator.generate(points)
if isinstance(voxel_output, dict):
voxels, coordinates, num_points = \
voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel']
else:
voxels, coordinates, num_points = voxel_output
else:
assert tv is not None, f"Unexpected error, library: 'cumm' wasn't imported properly."
voxel_output = self._voxel_generator.point_to_voxel(tv.from_numpy(points))
tv_voxels, tv_coordinates, tv_num_points = voxel_output
# make copy with numpy(), since numpy_view() will disappear as soon as the generator is deleted
voxels = tv_voxels.numpy()
coordinates = tv_coordinates.numpy()
num_points = tv_num_points.numpy()
return voxels, coordinates, num_points
class DataProcessor(object):
def __init__(self, processor_configs, point_cloud_range, training, num_point_features):
self.point_cloud_range = point_cloud_range
self.training = training
self.num_point_features = num_point_features
self.mode = 'train' if training else 'test'
self.grid_size = self.voxel_size = None
self.data_processor_queue = []
self.voxel_generator = None
for cur_cfg in processor_configs:
cur_processor = getattr(self, cur_cfg.NAME)(config=cur_cfg)
self.data_processor_queue.append(cur_processor)
def mask_points_and_boxes_outside_range(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.mask_points_and_boxes_outside_range, config=config)
if data_dict.get('points', None) is not None:
mask = mask_points_by_range(data_dict['points'], self.point_cloud_range)
data_dict['points'] = data_dict['points'][mask]
return data_dict
def shuffle_points(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.shuffle_points, config=config)
if config.SHUFFLE_ENABLED[self.mode]:
points = data_dict['points']
shuffle_idx = np.random.permutation(points.shape[0])
points = points[shuffle_idx]
data_dict['points'] = points
return data_dict
def transform_points_to_voxels_placeholder(self, data_dict=None, config=None):
# just calculate grid size
if data_dict is None:
grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE)
self.grid_size = np.round(grid_size).astype(np.int64)
self.voxel_size = config.VOXEL_SIZE
return partial(self.transform_points_to_voxels_placeholder, config=config)
return data_dict
def double_flip(self, points):
# y flip
points_yflip = points.copy()
points_yflip[:, 1] = -points_yflip[:, 1]
# x flip
points_xflip = points.copy()
points_xflip[:, 0] = -points_xflip[:, 0]
# x y flip
points_xyflip = points.copy()
points_xyflip[:, 0] = -points_xyflip[:, 0]
points_xyflip[:, 1] = -points_xyflip[:, 1]
return points_yflip, points_xflip, points_xyflip
def transform_points_to_voxels(self, data_dict=None, config=None):
if data_dict is None:
grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE)
self.grid_size = np.round(grid_size).astype(np.int64)
self.voxel_size = config.VOXEL_SIZE
# just bind the config, we will create the VoxelGeneratorWrapper later,
# to avoid pickling issues in multiprocess spawn
return partial(self.transform_points_to_voxels, config=config)
if self.voxel_generator is None:
self.voxel_generator = VoxelGeneratorWrapper(
vsize_xyz=config.VOXEL_SIZE,
coors_range_xyz=self.point_cloud_range,
num_point_features=self.num_point_features,
max_num_points_per_voxel=config.MAX_POINTS_PER_VOXEL,
max_num_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode],
)
points = data_dict['points']
voxel_output = self.voxel_generator.generate(points)
voxels, coordinates, num_points = voxel_output
data_dict['voxels'] = voxels
data_dict['voxel_coords'] = coordinates
data_dict['voxel_num_points'] = num_points
return data_dict
def sample_points(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.sample_points, config=config)
num_points = config.NUM_POINTS[self.mode]
if num_points == -1:
return data_dict
points = data_dict['points']
if num_points < len(points):
pts_depth = np.linalg.norm(points[:, 0:3], axis=1)
pts_near_flag = pts_depth < 40.0
far_idxs_choice = np.where(pts_near_flag == 0)[0]
near_idxs = np.where(pts_near_flag == 1)[0]
choice = []
if num_points > len(far_idxs_choice):
near_idxs_choice = np.random.choice(near_idxs, num_points - len(far_idxs_choice), replace=False)
choice = np.concatenate((near_idxs_choice, far_idxs_choice), axis=0) \
if len(far_idxs_choice) > 0 else near_idxs_choice
else:
choice = np.arange(0, len(points), dtype=np.int32)
choice = np.random.choice(choice, num_points, replace=False)
np.random.shuffle(choice)
else:
choice = np.arange(0, len(points), dtype=np.int32)
if num_points > len(points):
extra_choice = np.random.choice(choice, num_points - len(points), replace=False)
choice = np.concatenate((choice, extra_choice), axis=0)
np.random.shuffle(choice)
data_dict['points'] = points[choice]
return data_dict
def calculate_grid_size(self, data_dict=None, config=None):
if data_dict is None:
grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE)
self.grid_size = np.round(grid_size).astype(np.int64)
self.voxel_size = config.VOXEL_SIZE
return partial(self.calculate_grid_size, config=config)
return data_dict
def forward(self, data_dict):
"""
Args:
data_dict:
points: (N, 3 + C_in)
gt_boxes: optional, (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
gt_names: optional, (N), string
...
Returns:
"""
for cur_processor in self.data_processor_queue:
data_dict = cur_processor(data_dict=data_dict)
return data_dict
|