File size: 8,514 Bytes
b793f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from functools import partial

import numpy as np

tv = None
try:
    import cumm.tensorview as tv
except:
    pass


def mask_points_by_range(points, limit_range):
    mask = (points[:, 0] >= limit_range[0]) & (points[:, 0] <= limit_range[3]) \
           & (points[:, 1] >= limit_range[1]) & (points[:, 1] <= limit_range[4])
    return mask


class VoxelGeneratorWrapper():
    def __init__(self, vsize_xyz, coors_range_xyz, num_point_features, max_num_points_per_voxel, max_num_voxels):
        try:
            from spconv.utils import VoxelGeneratorV2 as VoxelGenerator
            self.spconv_ver = 1
        except:
            try:
                from spconv.utils import VoxelGenerator
                self.spconv_ver = 1
            except:
                from spconv.utils import Point2VoxelCPU3d as VoxelGenerator
                self.spconv_ver = 2

        if self.spconv_ver == 1:
            self._voxel_generator = VoxelGenerator(
                voxel_size=vsize_xyz,
                point_cloud_range=coors_range_xyz,
                max_num_points=max_num_points_per_voxel,
                max_voxels=max_num_voxels
            )
        else:
            self._voxel_generator = VoxelGenerator(
                vsize_xyz=vsize_xyz,
                coors_range_xyz=coors_range_xyz,
                num_point_features=num_point_features,
                max_num_points_per_voxel=max_num_points_per_voxel,
                max_num_voxels=max_num_voxels
            )

    def generate(self, points):
        if self.spconv_ver == 1:
            voxel_output = self._voxel_generator.generate(points)
            if isinstance(voxel_output, dict):
                voxels, coordinates, num_points = \
                    voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel']
            else:
                voxels, coordinates, num_points = voxel_output
        else:
            assert tv is not None, f"Unexpected error, library: 'cumm' wasn't imported properly."
            voxel_output = self._voxel_generator.point_to_voxel(tv.from_numpy(points))
            tv_voxels, tv_coordinates, tv_num_points = voxel_output
            # make copy with numpy(), since numpy_view() will disappear as soon as the generator is deleted
            voxels = tv_voxels.numpy()
            coordinates = tv_coordinates.numpy()
            num_points = tv_num_points.numpy()
        return voxels, coordinates, num_points


class DataProcessor(object):
    def __init__(self, processor_configs, point_cloud_range, training, num_point_features):
        self.point_cloud_range = point_cloud_range
        self.training = training
        self.num_point_features = num_point_features
        self.mode = 'train' if training else 'test'
        self.grid_size = self.voxel_size = None
        self.data_processor_queue = []

        self.voxel_generator = None

        for cur_cfg in processor_configs:
            cur_processor = getattr(self, cur_cfg.NAME)(config=cur_cfg)
            self.data_processor_queue.append(cur_processor)

    def mask_points_and_boxes_outside_range(self, data_dict=None, config=None):
        if data_dict is None:
            return partial(self.mask_points_and_boxes_outside_range, config=config)

        if data_dict.get('points', None) is not None:
            mask = mask_points_by_range(data_dict['points'], self.point_cloud_range)
            data_dict['points'] = data_dict['points'][mask]

        return data_dict

    def shuffle_points(self, data_dict=None, config=None):
        if data_dict is None:
            return partial(self.shuffle_points, config=config)

        if config.SHUFFLE_ENABLED[self.mode]:
            points = data_dict['points']
            shuffle_idx = np.random.permutation(points.shape[0])
            points = points[shuffle_idx]
            data_dict['points'] = points

        return data_dict

    def transform_points_to_voxels_placeholder(self, data_dict=None, config=None):
        # just calculate grid size
        if data_dict is None:
            grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = config.VOXEL_SIZE
            return partial(self.transform_points_to_voxels_placeholder, config=config)
        
        return data_dict

    def double_flip(self, points):
        # y flip
        points_yflip = points.copy()
        points_yflip[:, 1] = -points_yflip[:, 1]

        # x flip
        points_xflip = points.copy()
        points_xflip[:, 0] = -points_xflip[:, 0]

        # x y flip
        points_xyflip = points.copy()
        points_xyflip[:, 0] = -points_xyflip[:, 0]
        points_xyflip[:, 1] = -points_xyflip[:, 1]

        return points_yflip, points_xflip, points_xyflip

    def transform_points_to_voxels(self, data_dict=None, config=None):
        if data_dict is None:
            grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = config.VOXEL_SIZE
            # just bind the config, we will create the VoxelGeneratorWrapper later,
            # to avoid pickling issues in multiprocess spawn
            return partial(self.transform_points_to_voxels, config=config)

        if self.voxel_generator is None:
            self.voxel_generator = VoxelGeneratorWrapper(
                vsize_xyz=config.VOXEL_SIZE,
                coors_range_xyz=self.point_cloud_range,
                num_point_features=self.num_point_features,
                max_num_points_per_voxel=config.MAX_POINTS_PER_VOXEL,
                max_num_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode],
            )

        points = data_dict['points']
        voxel_output = self.voxel_generator.generate(points)
        voxels, coordinates, num_points = voxel_output

        data_dict['voxels'] = voxels
        data_dict['voxel_coords'] = coordinates
        data_dict['voxel_num_points'] = num_points
        return data_dict

    def sample_points(self, data_dict=None, config=None):
        if data_dict is None:
            return partial(self.sample_points, config=config)

        num_points = config.NUM_POINTS[self.mode]
        if num_points == -1:
            return data_dict

        points = data_dict['points']
        if num_points < len(points):
            pts_depth = np.linalg.norm(points[:, 0:3], axis=1)
            pts_near_flag = pts_depth < 40.0
            far_idxs_choice = np.where(pts_near_flag == 0)[0]
            near_idxs = np.where(pts_near_flag == 1)[0]
            choice = []
            if num_points > len(far_idxs_choice):
                near_idxs_choice = np.random.choice(near_idxs, num_points - len(far_idxs_choice), replace=False)
                choice = np.concatenate((near_idxs_choice, far_idxs_choice), axis=0) \
                    if len(far_idxs_choice) > 0 else near_idxs_choice
            else: 
                choice = np.arange(0, len(points), dtype=np.int32)
                choice = np.random.choice(choice, num_points, replace=False)
            np.random.shuffle(choice)
        else:
            choice = np.arange(0, len(points), dtype=np.int32)
            if num_points > len(points):
                extra_choice = np.random.choice(choice, num_points - len(points), replace=False)
                choice = np.concatenate((choice, extra_choice), axis=0)
            np.random.shuffle(choice)
        data_dict['points'] = points[choice]
        return data_dict

    def calculate_grid_size(self, data_dict=None, config=None):
        if data_dict is None:
            grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = config.VOXEL_SIZE
            return partial(self.calculate_grid_size, config=config)
        return data_dict

    def forward(self, data_dict):
        """
        Args:
            data_dict:
                points: (N, 3 + C_in)
                gt_boxes: optional, (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
                gt_names: optional, (N), string
                ...

        Returns:
        """

        for cur_processor in self.data_processor_queue:
            data_dict = cur_processor(data_dict=data_dict)

        return data_dict