File size: 10,520 Bytes
b793f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

from copy import deepcopy
import json

import os
import argparse
import torchvision.transforms.functional as F
import torch
import cv2
import numpy as np
from tqdm import tqdm
from pathlib import Path
import sys
sys.path.append('VISAM')
from main import get_args_parser
from models import build_model
from util.tool import load_model
from models.structures import Instances

from torch.utils.data import Dataset, DataLoader


# segment anything
sys.path.append('segment_anything')
from segment_anything import build_sam, SamPredictor 


class Colors:
    # Ultralytics color palette https://ultralytics.com/
    def __init__(self):
        # hex = matplotlib.colors.TABLEAU_COLORS.values()
        hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
                '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
        self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
        self.n = len(self.palette)

    def __call__(self, i, bgr=False):
        c = self.palette[int(i) % self.n]
        return (c[2], c[1], c[0]) if bgr else c

    @staticmethod
    def hex2rgb(h):  # rgb order (PIL)
        return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))


colors = Colors()  # create instance for 'from utils.plots import colors'


class ListImgDataset(Dataset):
    def __init__(self, mot_path, img_list, det_db) -> None:
        super().__init__()
        self.mot_path = mot_path
        self.img_list = img_list
        self.det_db = det_db

        '''
        common settings
        '''
        self.img_height = 800
        self.img_width = 1536
        self.mean = [0.485, 0.456, 0.406]
        self.std = [0.229, 0.224, 0.225]

    def load_img_from_file(self, f_path):
        cur_img = cv2.imread(os.path.join(self.mot_path, f_path))
        assert cur_img is not None, f_path
        cur_img = cv2.cvtColor(cur_img, cv2.COLOR_BGR2RGB)
        proposals = []
        im_h, im_w = cur_img.shape[:2]
        for line in self.det_db[f_path[:-4] + '.txt']:
            l, t, w, h, s = list(map(float, line.split(',')))
            proposals.append([(l + w / 2) / im_w,
                                (t + h / 2) / im_h,
                                w / im_w,
                                h / im_h,
                                s])
        return cur_img, torch.as_tensor(proposals).reshape(-1, 5)

    def init_img(self, img, proposals):
        ori_img = img.copy()
        self.seq_h, self.seq_w = img.shape[:2]
        scale = self.img_height / min(self.seq_h, self.seq_w)
        if max(self.seq_h, self.seq_w) * scale > self.img_width:
            scale = self.img_width / max(self.seq_h, self.seq_w)
        target_h = int(self.seq_h * scale)
        target_w = int(self.seq_w * scale)
        img = cv2.resize(img, (target_w, target_h))
        img = F.normalize(F.to_tensor(img), self.mean, self.std)
        img = img.unsqueeze(0)
        return img, ori_img, proposals

    def __len__(self):
        return len(self.img_list)
    
    def __getitem__(self, index):
        img, proposals = self.load_img_from_file(self.img_list[index])
        return self.init_img(img, proposals)


class Detector(object):
    def __init__(self, args, model, vid, sam_predictor=None):
        self.args = args
        self.detr = model

        self.vid = vid
        self.seq_num = os.path.basename(vid)
        img_list = os.listdir(os.path.join(self.args.mot_path, vid, 'img1'))
        img_list = [os.path.join(vid, 'img1', i) for i in img_list if 'jpg' in i]

        self.img_list = sorted(img_list)
        self.img_len = len(self.img_list)

        self.predict_path = os.path.join(self.args.output_dir, args.exp_name)
        os.makedirs(self.predict_path, exist_ok=True)
        
        fps = 25
        size = (1920, 1080) 
        self.videowriter = cv2.VideoWriter('visam.avi', cv2.VideoWriter_fourcc('M','J','P','G'), fps, size)
        
        self.sam_predictor = sam_predictor

    @staticmethod
    def filter_dt_by_score(dt_instances: Instances, prob_threshold: float) -> Instances:
        keep = dt_instances.scores > prob_threshold
        keep &= dt_instances.obj_idxes >= 0
        return dt_instances[keep]

    @staticmethod
    def filter_dt_by_area(dt_instances: Instances, area_threshold: float) -> Instances:
        wh = dt_instances.boxes[:, 2:4] - dt_instances.boxes[:, 0:2]
        areas = wh[:, 0] * wh[:, 1]
        keep = areas > area_threshold
        return dt_instances[keep]

    def detect(self, prob_threshold=0.6, area_threshold=100, vis=False):
        total_dts = 0
        total_occlusion_dts = 0

        track_instances = None
        with open(os.path.join(self.args.mot_path, 'DanceTrack', self.args.det_db)) as f:
            det_db = json.load(f)
        loader = DataLoader(ListImgDataset(self.args.mot_path, self.img_list, det_db), 1, num_workers=2)
        lines = []
        for i, data in enumerate(tqdm(loader)):
            cur_img, ori_img, proposals = [d[0] for d in data]
            cur_img, proposals = cur_img.cuda(), proposals.cuda()

            # track_instances = None
            if track_instances is not None:
                track_instances.remove('boxes')
                track_instances.remove('labels')
            seq_h, seq_w, _ = ori_img.shape

            res = self.detr.inference_single_image(cur_img, (seq_h, seq_w), track_instances, proposals)
            track_instances = res['track_instances']

            dt_instances = deepcopy(track_instances)

            # filter det instances by score.
            dt_instances = self.filter_dt_by_score(dt_instances, prob_threshold)
            dt_instances = self.filter_dt_by_area(dt_instances, area_threshold)

            total_dts += len(dt_instances)

            bbox_xyxy = dt_instances.boxes.tolist()
            identities = dt_instances.obj_idxes.tolist()

            img = ori_img.to(torch.device('cpu')).numpy().copy()[..., ::-1]
            if self.sam_predictor is not None:
                masks_all = []
                self.sam_predictor.set_image(ori_img.to(torch.device('cpu')).numpy().copy())
                
                for bbox, id in zip(np.array(bbox_xyxy), identities):
                    masks, iou_predictions, low_res_masks = self.sam_predictor.predict(box=bbox)
                    index_max = iou_predictions.argsort()[0]
                    masks = np.concatenate([masks[index_max:(index_max+1)], masks[index_max:(index_max+1)], masks[index_max:(index_max+1)]], axis=0)
                    masks = masks.astype(np.int32)*np.array(colors(id))[:, None, None]
                    masks_all.append(masks)
                
                self.sam_predictor.reset_image()
                if len(masks_all):
                    masks_sum = masks_all[0].copy()
                    for m in masks_all[1:]:
                        masks_sum += m
                else:
                    masks_sum = np.zeros_like(img).transpose(2, 0, 1)

                img = (img * 0.5 + (masks_sum.transpose(1,2,0) * 30) %128).astype(np.uint8)
            for bbox in bbox_xyxy:
                cv2.rectangle(img, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0,0,255), thickness=3)
            self.videowriter.write(img)

            save_format = '{frame},{id},{x1:.2f},{y1:.2f},{w:.2f},{h:.2f},1,-1,-1,-1\n'
            for xyxy, track_id in zip(bbox_xyxy, identities):
                if track_id < 0 or track_id is None:
                    continue
                x1, y1, x2, y2 = xyxy
                w, h = x2 - x1, y2 - y1
                lines.append(save_format.format(frame=i + 1, id=track_id, x1=x1, y1=y1, w=w, h=h))
        with open(os.path.join(self.predict_path, f'{self.seq_num}.txt'), 'w') as f:
            f.writelines(lines)
        print("totally {} dts {} occlusion dts".format(total_dts, total_occlusion_dts))


class RuntimeTrackerBase(object):
    def __init__(self, score_thresh=0.6, filter_score_thresh=0.5, miss_tolerance=10):
        self.score_thresh = score_thresh
        self.filter_score_thresh = filter_score_thresh
        self.miss_tolerance = miss_tolerance
        self.max_obj_id = 0

    def clear(self):
        self.max_obj_id = 0

    def update(self, track_instances: Instances):
        device = track_instances.obj_idxes.device

        track_instances.disappear_time[track_instances.scores >= self.score_thresh] = 0
        new_obj = (track_instances.obj_idxes == -1) & (track_instances.scores >= self.score_thresh)
        disappeared_obj = (track_instances.obj_idxes >= 0) & (track_instances.scores < self.filter_score_thresh)
        num_new_objs = new_obj.sum().item()

        track_instances.obj_idxes[new_obj] = self.max_obj_id + torch.arange(num_new_objs, device=device)
        self.max_obj_id += num_new_objs

        track_instances.disappear_time[disappeared_obj] += 1
        to_del = disappeared_obj & (track_instances.disappear_time >= self.miss_tolerance)
        track_instances.obj_idxes[to_del] = -1


if __name__ == "__main__":

    parser = argparse.ArgumentParser("Grounded-Segment-Anything VISAM Demo", parents=[get_args_parser()])
    parser.add_argument('--score_threshold', default=0.5, type=float)
    parser.add_argument('--update_score_threshold', default=0.5, type=float)
    parser.add_argument('--miss_tolerance', default=20, type=int)
    
    parser.add_argument(
        "--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
    )
    parser.add_argument("--video_path", type=str, required=True, help="path to image file")

    args = parser.parse_args()

    # make dir
    if args.output_dir:
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    
    sam_predictor = SamPredictor(build_sam(checkpoint=args.sam_checkpoint))
    _ = sam_predictor.model.to(device='cuda')
    
    # load model and weights
    detr, _, _ = build_model(args)
    detr.track_embed.score_thr = args.update_score_threshold
    detr.track_base = RuntimeTrackerBase(args.score_threshold, args.score_threshold, args.miss_tolerance)
    checkpoint = torch.load(args.resume, map_location='cpu')
    detr = load_model(detr, args.resume)
    detr.eval()
    detr = detr.cuda()
    
    rank = int(os.environ.get('RLAUNCH_REPLICA', '0'))
    ws = int(os.environ.get('RLAUNCH_REPLICA_TOTAL', '1'))
    
    det = Detector(args, model=detr, vid=args.video_path, sam_predictor=sam_predictor)
    det.detect(args.score_threshold)