File size: 10,520 Bytes
b793f0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
from copy import deepcopy
import json
import os
import argparse
import torchvision.transforms.functional as F
import torch
import cv2
import numpy as np
from tqdm import tqdm
from pathlib import Path
import sys
sys.path.append('VISAM')
from main import get_args_parser
from models import build_model
from util.tool import load_model
from models.structures import Instances
from torch.utils.data import Dataset, DataLoader
# segment anything
sys.path.append('segment_anything')
from segment_anything import build_sam, SamPredictor
class Colors:
# Ultralytics color palette https://ultralytics.com/
def __init__(self):
# hex = matplotlib.colors.TABLEAU_COLORS.values()
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
self.n = len(self.palette)
def __call__(self, i, bgr=False):
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h): # rgb order (PIL)
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
colors = Colors() # create instance for 'from utils.plots import colors'
class ListImgDataset(Dataset):
def __init__(self, mot_path, img_list, det_db) -> None:
super().__init__()
self.mot_path = mot_path
self.img_list = img_list
self.det_db = det_db
'''
common settings
'''
self.img_height = 800
self.img_width = 1536
self.mean = [0.485, 0.456, 0.406]
self.std = [0.229, 0.224, 0.225]
def load_img_from_file(self, f_path):
cur_img = cv2.imread(os.path.join(self.mot_path, f_path))
assert cur_img is not None, f_path
cur_img = cv2.cvtColor(cur_img, cv2.COLOR_BGR2RGB)
proposals = []
im_h, im_w = cur_img.shape[:2]
for line in self.det_db[f_path[:-4] + '.txt']:
l, t, w, h, s = list(map(float, line.split(',')))
proposals.append([(l + w / 2) / im_w,
(t + h / 2) / im_h,
w / im_w,
h / im_h,
s])
return cur_img, torch.as_tensor(proposals).reshape(-1, 5)
def init_img(self, img, proposals):
ori_img = img.copy()
self.seq_h, self.seq_w = img.shape[:2]
scale = self.img_height / min(self.seq_h, self.seq_w)
if max(self.seq_h, self.seq_w) * scale > self.img_width:
scale = self.img_width / max(self.seq_h, self.seq_w)
target_h = int(self.seq_h * scale)
target_w = int(self.seq_w * scale)
img = cv2.resize(img, (target_w, target_h))
img = F.normalize(F.to_tensor(img), self.mean, self.std)
img = img.unsqueeze(0)
return img, ori_img, proposals
def __len__(self):
return len(self.img_list)
def __getitem__(self, index):
img, proposals = self.load_img_from_file(self.img_list[index])
return self.init_img(img, proposals)
class Detector(object):
def __init__(self, args, model, vid, sam_predictor=None):
self.args = args
self.detr = model
self.vid = vid
self.seq_num = os.path.basename(vid)
img_list = os.listdir(os.path.join(self.args.mot_path, vid, 'img1'))
img_list = [os.path.join(vid, 'img1', i) for i in img_list if 'jpg' in i]
self.img_list = sorted(img_list)
self.img_len = len(self.img_list)
self.predict_path = os.path.join(self.args.output_dir, args.exp_name)
os.makedirs(self.predict_path, exist_ok=True)
fps = 25
size = (1920, 1080)
self.videowriter = cv2.VideoWriter('visam.avi', cv2.VideoWriter_fourcc('M','J','P','G'), fps, size)
self.sam_predictor = sam_predictor
@staticmethod
def filter_dt_by_score(dt_instances: Instances, prob_threshold: float) -> Instances:
keep = dt_instances.scores > prob_threshold
keep &= dt_instances.obj_idxes >= 0
return dt_instances[keep]
@staticmethod
def filter_dt_by_area(dt_instances: Instances, area_threshold: float) -> Instances:
wh = dt_instances.boxes[:, 2:4] - dt_instances.boxes[:, 0:2]
areas = wh[:, 0] * wh[:, 1]
keep = areas > area_threshold
return dt_instances[keep]
def detect(self, prob_threshold=0.6, area_threshold=100, vis=False):
total_dts = 0
total_occlusion_dts = 0
track_instances = None
with open(os.path.join(self.args.mot_path, 'DanceTrack', self.args.det_db)) as f:
det_db = json.load(f)
loader = DataLoader(ListImgDataset(self.args.mot_path, self.img_list, det_db), 1, num_workers=2)
lines = []
for i, data in enumerate(tqdm(loader)):
cur_img, ori_img, proposals = [d[0] for d in data]
cur_img, proposals = cur_img.cuda(), proposals.cuda()
# track_instances = None
if track_instances is not None:
track_instances.remove('boxes')
track_instances.remove('labels')
seq_h, seq_w, _ = ori_img.shape
res = self.detr.inference_single_image(cur_img, (seq_h, seq_w), track_instances, proposals)
track_instances = res['track_instances']
dt_instances = deepcopy(track_instances)
# filter det instances by score.
dt_instances = self.filter_dt_by_score(dt_instances, prob_threshold)
dt_instances = self.filter_dt_by_area(dt_instances, area_threshold)
total_dts += len(dt_instances)
bbox_xyxy = dt_instances.boxes.tolist()
identities = dt_instances.obj_idxes.tolist()
img = ori_img.to(torch.device('cpu')).numpy().copy()[..., ::-1]
if self.sam_predictor is not None:
masks_all = []
self.sam_predictor.set_image(ori_img.to(torch.device('cpu')).numpy().copy())
for bbox, id in zip(np.array(bbox_xyxy), identities):
masks, iou_predictions, low_res_masks = self.sam_predictor.predict(box=bbox)
index_max = iou_predictions.argsort()[0]
masks = np.concatenate([masks[index_max:(index_max+1)], masks[index_max:(index_max+1)], masks[index_max:(index_max+1)]], axis=0)
masks = masks.astype(np.int32)*np.array(colors(id))[:, None, None]
masks_all.append(masks)
self.sam_predictor.reset_image()
if len(masks_all):
masks_sum = masks_all[0].copy()
for m in masks_all[1:]:
masks_sum += m
else:
masks_sum = np.zeros_like(img).transpose(2, 0, 1)
img = (img * 0.5 + (masks_sum.transpose(1,2,0) * 30) %128).astype(np.uint8)
for bbox in bbox_xyxy:
cv2.rectangle(img, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0,0,255), thickness=3)
self.videowriter.write(img)
save_format = '{frame},{id},{x1:.2f},{y1:.2f},{w:.2f},{h:.2f},1,-1,-1,-1\n'
for xyxy, track_id in zip(bbox_xyxy, identities):
if track_id < 0 or track_id is None:
continue
x1, y1, x2, y2 = xyxy
w, h = x2 - x1, y2 - y1
lines.append(save_format.format(frame=i + 1, id=track_id, x1=x1, y1=y1, w=w, h=h))
with open(os.path.join(self.predict_path, f'{self.seq_num}.txt'), 'w') as f:
f.writelines(lines)
print("totally {} dts {} occlusion dts".format(total_dts, total_occlusion_dts))
class RuntimeTrackerBase(object):
def __init__(self, score_thresh=0.6, filter_score_thresh=0.5, miss_tolerance=10):
self.score_thresh = score_thresh
self.filter_score_thresh = filter_score_thresh
self.miss_tolerance = miss_tolerance
self.max_obj_id = 0
def clear(self):
self.max_obj_id = 0
def update(self, track_instances: Instances):
device = track_instances.obj_idxes.device
track_instances.disappear_time[track_instances.scores >= self.score_thresh] = 0
new_obj = (track_instances.obj_idxes == -1) & (track_instances.scores >= self.score_thresh)
disappeared_obj = (track_instances.obj_idxes >= 0) & (track_instances.scores < self.filter_score_thresh)
num_new_objs = new_obj.sum().item()
track_instances.obj_idxes[new_obj] = self.max_obj_id + torch.arange(num_new_objs, device=device)
self.max_obj_id += num_new_objs
track_instances.disappear_time[disappeared_obj] += 1
to_del = disappeared_obj & (track_instances.disappear_time >= self.miss_tolerance)
track_instances.obj_idxes[to_del] = -1
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded-Segment-Anything VISAM Demo", parents=[get_args_parser()])
parser.add_argument('--score_threshold', default=0.5, type=float)
parser.add_argument('--update_score_threshold', default=0.5, type=float)
parser.add_argument('--miss_tolerance', default=20, type=int)
parser.add_argument(
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument("--video_path", type=str, required=True, help="path to image file")
args = parser.parse_args()
# make dir
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
sam_predictor = SamPredictor(build_sam(checkpoint=args.sam_checkpoint))
_ = sam_predictor.model.to(device='cuda')
# load model and weights
detr, _, _ = build_model(args)
detr.track_embed.score_thr = args.update_score_threshold
detr.track_base = RuntimeTrackerBase(args.score_threshold, args.score_threshold, args.miss_tolerance)
checkpoint = torch.load(args.resume, map_location='cpu')
detr = load_model(detr, args.resume)
detr.eval()
detr = detr.cuda()
rank = int(os.environ.get('RLAUNCH_REPLICA', '0'))
ws = int(os.environ.get('RLAUNCH_REPLICA_TOTAL', '1'))
det = Detector(args, model=detr, vid=args.video_path, sam_predictor=sam_predictor)
det.detect(args.score_threshold)
|