# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Cvt model.""" from __future__ import annotations import collections.abc from dataclasses import dataclass from typing import Optional, Tuple, Union import tensorflow as tf from ...modeling_tf_outputs import TFImageClassifierOutputWithNoAttention from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_cvt import CvtConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "CvtConfig" TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/cvt-13", "microsoft/cvt-13-384", "microsoft/cvt-13-384-22k", "microsoft/cvt-21", "microsoft/cvt-21-384", "microsoft/cvt-21-384-22k", # See all Cvt models at https://huggingface.co/models?filter=cvt ] @dataclass class TFBaseModelOutputWithCLSToken(ModelOutput): """ Base class for model's outputs. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. cls_token_value (`tf.Tensor` of shape `(batch_size, 1, hidden_size)`): Classification token at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. """ last_hidden_state: tf.Tensor = None cls_token_value: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None class TFCvtDropPath(tf.keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_prob: float, **kwargs): super().__init__(**kwargs) self.drop_prob = drop_prob def call(self, x: tf.Tensor, training=None): if self.drop_prob == 0.0 or not training: return x keep_prob = 1 - self.drop_prob shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1, dtype=self.compute_dtype) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor class TFCvtEmbeddings(tf.keras.layers.Layer): """Construct the Convolutional Token Embeddings.""" def __init__( self, config: CvtConfig, patch_size: int, embed_dim: int, stride: int, padding: int, dropout_rate: float, **kwargs, ): super().__init__(**kwargs) self.convolution_embeddings = TFCvtConvEmbeddings( config, patch_size=patch_size, embed_dim=embed_dim, stride=stride, padding=padding, name="convolution_embeddings", ) self.dropout = tf.keras.layers.Dropout(dropout_rate) def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.convolution_embeddings(pixel_values) hidden_state = self.dropout(hidden_state, training=training) return hidden_state class TFCvtConvEmbeddings(tf.keras.layers.Layer): """Image to Convolution Embeddings. This convolutional operation aims to model local spatial contexts.""" def __init__(self, config: CvtConfig, patch_size: int, embed_dim: int, stride: int, padding: int, **kwargs): super().__init__(**kwargs) self.padding = tf.keras.layers.ZeroPadding2D(padding=padding) self.patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) self.projection = tf.keras.layers.Conv2D( filters=embed_dim, kernel_size=patch_size, strides=stride, padding="valid", data_format="channels_last", kernel_initializer=get_initializer(config.initializer_range), name="projection", ) # Using the same default epsilon as PyTorch self.normalization = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="normalization") def call(self, pixel_values: tf.Tensor) -> tf.Tensor: if isinstance(pixel_values, dict): pixel_values = pixel_values["pixel_values"] pixel_values = self.projection(self.padding(pixel_values)) # "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels" batch_size, height, width, num_channels = shape_list(pixel_values) hidden_size = height * width pixel_values = tf.reshape(pixel_values, shape=(batch_size, hidden_size, num_channels)) pixel_values = self.normalization(pixel_values) # "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels" pixel_values = tf.reshape(pixel_values, shape=(batch_size, height, width, num_channels)) return pixel_values class TFCvtSelfAttentionConvProjection(tf.keras.layers.Layer): """Convolutional projection layer.""" def __init__(self, config: CvtConfig, embed_dim: int, kernel_size: int, stride: int, padding: int, **kwargs): super().__init__(**kwargs) self.padding = tf.keras.layers.ZeroPadding2D(padding=padding) self.convolution = tf.keras.layers.Conv2D( filters=embed_dim, kernel_size=kernel_size, kernel_initializer=get_initializer(config.initializer_range), padding="valid", strides=stride, use_bias=False, name="convolution", groups=embed_dim, ) # Using the same default epsilon as PyTorch, TF uses (1 - pytorch momentum) self.normalization = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization") def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.convolution(self.padding(hidden_state)) hidden_state = self.normalization(hidden_state, training=training) return hidden_state class TFCvtSelfAttentionLinearProjection(tf.keras.layers.Layer): """Linear projection layer used to flatten tokens into 1D.""" def call(self, hidden_state: tf.Tensor) -> tf.Tensor: # "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels" batch_size, height, width, num_channels = shape_list(hidden_state) hidden_size = height * width hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels)) return hidden_state class TFCvtSelfAttentionProjection(tf.keras.layers.Layer): """Convolutional Projection for Attention.""" def __init__( self, config: CvtConfig, embed_dim: int, kernel_size: int, stride: int, padding: int, projection_method: str = "dw_bn", **kwargs, ): super().__init__(**kwargs) if projection_method == "dw_bn": self.convolution_projection = TFCvtSelfAttentionConvProjection( config, embed_dim, kernel_size, stride, padding, name="convolution_projection" ) self.linear_projection = TFCvtSelfAttentionLinearProjection() def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.convolution_projection(hidden_state, training=training) hidden_state = self.linear_projection(hidden_state) return hidden_state class TFCvtSelfAttention(tf.keras.layers.Layer): """ Self-attention layer. A depth-wise separable convolution operation (Convolutional Projection), is applied for query, key, and value embeddings. """ def __init__( self, config: CvtConfig, num_heads: int, embed_dim: int, kernel_size: int, stride_q: int, stride_kv: int, padding_q: int, padding_kv: int, qkv_projection_method: str, qkv_bias: bool, attention_drop_rate: float, with_cls_token: bool = True, **kwargs, ): super().__init__(**kwargs) self.scale = embed_dim**-0.5 self.with_cls_token = with_cls_token self.embed_dim = embed_dim self.num_heads = num_heads self.convolution_projection_query = TFCvtSelfAttentionProjection( config, embed_dim, kernel_size, stride_q, padding_q, projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method, name="convolution_projection_query", ) self.convolution_projection_key = TFCvtSelfAttentionProjection( config, embed_dim, kernel_size, stride_kv, padding_kv, projection_method=qkv_projection_method, name="convolution_projection_key", ) self.convolution_projection_value = TFCvtSelfAttentionProjection( config, embed_dim, kernel_size, stride_kv, padding_kv, projection_method=qkv_projection_method, name="convolution_projection_value", ) self.projection_query = tf.keras.layers.Dense( units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), use_bias=qkv_bias, bias_initializer="zeros", name="projection_query", ) self.projection_key = tf.keras.layers.Dense( units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), use_bias=qkv_bias, bias_initializer="zeros", name="projection_key", ) self.projection_value = tf.keras.layers.Dense( units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), use_bias=qkv_bias, bias_initializer="zeros", name="projection_value", ) self.dropout = tf.keras.layers.Dropout(attention_drop_rate) def rearrange_for_multi_head_attention(self, hidden_state: tf.Tensor) -> tf.Tensor: batch_size, hidden_size, _ = shape_list(hidden_state) head_dim = self.embed_dim // self.num_heads hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, self.num_heads, head_dim)) hidden_state = tf.transpose(hidden_state, perm=(0, 2, 1, 3)) return hidden_state def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor: if self.with_cls_token: cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1) # "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels" batch_size, hidden_size, num_channels = shape_list(hidden_state) hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels)) key = self.convolution_projection_key(hidden_state, training=training) query = self.convolution_projection_query(hidden_state, training=training) value = self.convolution_projection_value(hidden_state, training=training) if self.with_cls_token: query = tf.concat((cls_token, query), axis=1) key = tf.concat((cls_token, key), axis=1) value = tf.concat((cls_token, value), axis=1) head_dim = self.embed_dim // self.num_heads query = self.rearrange_for_multi_head_attention(self.projection_query(query)) key = self.rearrange_for_multi_head_attention(self.projection_key(key)) value = self.rearrange_for_multi_head_attention(self.projection_value(value)) attention_score = tf.matmul(query, key, transpose_b=True) * self.scale attention_probs = stable_softmax(logits=attention_score, axis=-1) attention_probs = self.dropout(attention_probs, training=training) context = tf.matmul(attention_probs, value) # "batch_size, num_heads, hidden_size, head_dim -> batch_size, hidden_size, (num_heads*head_dim)" _, _, hidden_size, _ = shape_list(context) context = tf.transpose(context, perm=(0, 2, 1, 3)) context = tf.reshape(context, (batch_size, hidden_size, self.num_heads * head_dim)) return context class TFCvtSelfOutput(tf.keras.layers.Layer): """Output of the Attention layer .""" def __init__(self, config: CvtConfig, embed_dim: int, drop_rate: float, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(drop_rate) def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.dense(inputs=hidden_state) hidden_state = self.dropout(inputs=hidden_state, training=training) return hidden_state class TFCvtAttention(tf.keras.layers.Layer): """Attention layer. First chunk of the convolutional transformer block.""" def __init__( self, config: CvtConfig, num_heads: int, embed_dim: int, kernel_size: int, stride_q: int, stride_kv: int, padding_q: int, padding_kv: int, qkv_projection_method: str, qkv_bias: bool, attention_drop_rate: float, drop_rate: float, with_cls_token: bool = True, **kwargs, ): super().__init__(**kwargs) self.attention = TFCvtSelfAttention( config, num_heads, embed_dim, kernel_size, stride_q, stride_kv, padding_q, padding_kv, qkv_projection_method, qkv_bias, attention_drop_rate, with_cls_token, name="attention", ) self.dense_output = TFCvtSelfOutput(config, embed_dim, drop_rate, name="output") def prune_heads(self, heads): raise NotImplementedError def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False): self_output = self.attention(hidden_state, height, width, training=training) attention_output = self.dense_output(self_output, training=training) return attention_output class TFCvtIntermediate(tf.keras.layers.Layer): """Intermediate dense layer. Second chunk of the convolutional transformer block.""" def __init__(self, config: CvtConfig, embed_dim: int, mlp_ratio: int, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=int(embed_dim * mlp_ratio), kernel_initializer=get_initializer(config.initializer_range), activation="gelu", name="dense", ) def call(self, hidden_state: tf.Tensor) -> tf.Tensor: hidden_state = self.dense(hidden_state) return hidden_state class TFCvtOutput(tf.keras.layers.Layer): """ Output of the Convolutional Transformer Block (last chunk). It consists of a MLP and a residual connection. """ def __init__(self, config: CvtConfig, embed_dim: int, drop_rate: int, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(drop_rate) def call(self, hidden_state: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.dense(inputs=hidden_state) hidden_state = self.dropout(inputs=hidden_state, training=training) hidden_state = hidden_state + input_tensor return hidden_state class TFCvtLayer(tf.keras.layers.Layer): """ Convolutional Transformer Block composed by attention layers, normalization and multi-layer perceptrons (mlps). It consists of 3 chunks : an attention layer, an intermediate dense layer and an output layer. This corresponds to the `Block` class in the original implementation. """ def __init__( self, config: CvtConfig, num_heads: int, embed_dim: int, kernel_size: int, stride_q: int, stride_kv: int, padding_q: int, padding_kv: int, qkv_projection_method: str, qkv_bias: bool, attention_drop_rate: float, drop_rate: float, mlp_ratio: float, drop_path_rate: float, with_cls_token: bool = True, **kwargs, ): super().__init__(**kwargs) self.attention = TFCvtAttention( config, num_heads, embed_dim, kernel_size, stride_q, stride_kv, padding_q, padding_kv, qkv_projection_method, qkv_bias, attention_drop_rate, drop_rate, with_cls_token, name="attention", ) self.intermediate = TFCvtIntermediate(config, embed_dim, mlp_ratio, name="intermediate") self.dense_output = TFCvtOutput(config, embed_dim, drop_rate, name="output") # Using `layers.Activation` instead of `tf.identity` to better control `training` behaviour. self.drop_path = ( TFCvtDropPath(drop_path_rate, name="drop_path") if drop_path_rate > 0.0 else tf.keras.layers.Activation("linear", name="drop_path") ) # Using the same default epsilon as PyTorch self.layernorm_before = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_before") self.layernorm_after = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_after") def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor: # in Cvt, layernorm is applied before self-attention attention_output = self.attention(self.layernorm_before(hidden_state), height, width, training=training) attention_output = self.drop_path(attention_output, training=training) # first residual connection hidden_state = attention_output + hidden_state # in Cvt, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_state) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.dense_output(layer_output, hidden_state) layer_output = self.drop_path(layer_output, training=training) return layer_output class TFCvtStage(tf.keras.layers.Layer): """ Cvt stage (encoder block). Each stage has 2 parts : - (1) A Convolutional Token Embedding layer - (2) A Convolutional Transformer Block (layer). The classification token is added only in the last stage. Args: config ([`CvtConfig`]): Model configuration class. stage (`int`): Stage number. """ def __init__(self, config: CvtConfig, stage: int, **kwargs): super().__init__(**kwargs) self.config = config self.stage = stage if self.config.cls_token[self.stage]: self.cls_token = self.add_weight( shape=(1, 1, self.config.embed_dim[-1]), initializer=get_initializer(self.config.initializer_range), trainable=True, name="cvt.encoder.stages.2.cls_token", ) self.embedding = TFCvtEmbeddings( self.config, patch_size=config.patch_sizes[self.stage], stride=config.patch_stride[self.stage], embed_dim=config.embed_dim[self.stage], padding=config.patch_padding[self.stage], dropout_rate=config.drop_rate[self.stage], name="embedding", ) drop_path_rates = tf.linspace(0.0, config.drop_path_rate[self.stage], config.depth[stage]) drop_path_rates = [x.numpy().item() for x in drop_path_rates] self.layers = [ TFCvtLayer( config, num_heads=config.num_heads[self.stage], embed_dim=config.embed_dim[self.stage], kernel_size=config.kernel_qkv[self.stage], stride_q=config.stride_q[self.stage], stride_kv=config.stride_kv[self.stage], padding_q=config.padding_q[self.stage], padding_kv=config.padding_kv[self.stage], qkv_projection_method=config.qkv_projection_method[self.stage], qkv_bias=config.qkv_bias[self.stage], attention_drop_rate=config.attention_drop_rate[self.stage], drop_rate=config.drop_rate[self.stage], mlp_ratio=config.mlp_ratio[self.stage], drop_path_rate=drop_path_rates[self.stage], with_cls_token=config.cls_token[self.stage], name=f"layers.{j}", ) for j in range(config.depth[self.stage]) ] def call(self, hidden_state: tf.Tensor, training: bool = False): cls_token = None hidden_state = self.embedding(hidden_state, training) # "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels" batch_size, height, width, num_channels = shape_list(hidden_state) hidden_size = height * width hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels)) if self.config.cls_token[self.stage]: cls_token = tf.repeat(self.cls_token, repeats=batch_size, axis=0) hidden_state = tf.concat((cls_token, hidden_state), axis=1) for layer in self.layers: layer_outputs = layer(hidden_state, height, width, training=training) hidden_state = layer_outputs if self.config.cls_token[self.stage]: cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1) # "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels" hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels)) return hidden_state, cls_token class TFCvtEncoder(tf.keras.layers.Layer): """ Convolutional Vision Transformer encoder. CVT has 3 stages of encoder blocks with their respective number of layers (depth) being 1, 2 and 10. Args: config ([`CvtConfig`]): Model configuration class. """ config_class = CvtConfig def __init__(self, config: CvtConfig, **kwargs): super().__init__(**kwargs) self.config = config self.stages = [ TFCvtStage(config, stage_idx, name=f"stages.{stage_idx}") for stage_idx in range(len(config.depth)) ] def call( self, pixel_values: TFModelInputType, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None hidden_state = pixel_values # When running on CPU, `tf.keras.layers.Conv2D` doesn't support (batch_size, num_channels, height, width) # as input format. So change the input format to (batch_size, height, width, num_channels). hidden_state = tf.transpose(hidden_state, perm=(0, 2, 3, 1)) cls_token = None for _, (stage_module) in enumerate(self.stages): hidden_state, cls_token = stage_module(hidden_state, training=training) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) # Change back to (batch_size, num_channels, height, width) format to have uniformity in the modules hidden_state = tf.transpose(hidden_state, perm=(0, 3, 1, 2)) if output_hidden_states: all_hidden_states = tuple([tf.transpose(hs, perm=(0, 3, 1, 2)) for hs in all_hidden_states]) if not return_dict: return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None) return TFBaseModelOutputWithCLSToken( last_hidden_state=hidden_state, cls_token_value=cls_token, hidden_states=all_hidden_states, ) @keras_serializable class TFCvtMainLayer(tf.keras.layers.Layer): """Construct the Cvt model.""" config_class = CvtConfig def __init__(self, config: CvtConfig, **kwargs): super().__init__(**kwargs) self.config = config self.encoder = TFCvtEncoder(config, name="encoder") @unpack_inputs def call( self, pixel_values: TFModelInputType | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]: if pixel_values is None: raise ValueError("You have to specify pixel_values") encoder_outputs = self.encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutputWithCLSToken( last_hidden_state=sequence_output, cls_token_value=encoder_outputs.cls_token_value, hidden_states=encoder_outputs.hidden_states, ) class TFCvtPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CvtConfig base_model_prefix = "cvt" main_input_name = "pixel_values" TFCVT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using [`tf.keras.Model.fit`] method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`. Args: config ([`CvtConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ TFCVT_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.", TFCVT_START_DOCSTRING, ) class TFCvtModel(TFCvtPreTrainedModel): def __init__(self, config: CvtConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.cvt = TFCvtMainLayer(config, name="cvt") @unpack_inputs @add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutputWithCLSToken, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFCvtModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13") >>> model = TFCvtModel.from_pretrained("microsoft/cvt-13") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" if pixel_values is None: raise ValueError("You have to specify pixel_values") outputs = self.cvt( pixel_values=pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithCLSToken( last_hidden_state=outputs.last_hidden_state, cls_token_value=outputs.cls_token_value, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, TFCVT_START_DOCSTRING, ) class TFCvtForImageClassification(TFCvtPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: CvtConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.cvt = TFCvtMainLayer(config, name="cvt") # Using same default epsilon as in the original implementation. self.layernorm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm") # Classifier head self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), use_bias=True, bias_initializer="zeros", name="classifier", ) @unpack_inputs @add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFCvtForImageClassification >>> import tensorflow as tf >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13") >>> model = TFCvtForImageClassification.from_pretrained("microsoft/cvt-13") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0] >>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)]) ```""" outputs = self.cvt( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] cls_token = outputs[1] if self.config.cls_token[-1]: sequence_output = self.layernorm(cls_token) else: # rearrange "batch_size, num_channels, height, width -> batch_size, (height*width), num_channels" batch_size, num_channels, height, width = shape_list(sequence_output) sequence_output = tf.reshape(sequence_output, shape=(batch_size, num_channels, height * width)) sequence_output = tf.transpose(sequence_output, perm=(0, 2, 1)) sequence_output = self.layernorm(sequence_output) sequence_output_mean = tf.reduce_mean(sequence_output, axis=1) logits = self.classifier(sequence_output_mean) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)