|
from typing import Any, Dict, List, Union |
|
|
|
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends |
|
from .base import PIPELINE_INIT_ARGS, Pipeline |
|
|
|
|
|
if is_vision_available(): |
|
from ..image_utils import load_image |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from ..models.auto.modeling_auto import ( |
|
MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, |
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
Prediction = Dict[str, Any] |
|
Predictions = List[Prediction] |
|
|
|
|
|
@add_end_docstrings(PIPELINE_INIT_ARGS) |
|
class ObjectDetectionPipeline(Pipeline): |
|
""" |
|
Object detection pipeline using any `AutoModelForObjectDetection`. This pipeline predicts bounding boxes of objects |
|
and their classes. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> detector = pipeline(model="facebook/detr-resnet-50") |
|
>>> detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") |
|
[{'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}, {'score': 0.999, 'label': 'bird', 'box': {'xmin': 398, 'ymin': 105, 'xmax': 767, 'ymax': 507}}] |
|
|
|
>>> # x, y are expressed relative to the top left hand corner. |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) |
|
|
|
This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier: |
|
`"object-detection"`. |
|
|
|
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=object-detection). |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
if self.framework == "tf": |
|
raise ValueError(f"The {self.__class__} is only available in PyTorch.") |
|
|
|
requires_backends(self, "vision") |
|
mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES.copy() |
|
mapping.update(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES) |
|
self.check_model_type(mapping) |
|
|
|
def _sanitize_parameters(self, **kwargs): |
|
preprocess_params = {} |
|
if "timeout" in kwargs: |
|
preprocess_params["timeout"] = kwargs["timeout"] |
|
postprocess_kwargs = {} |
|
if "threshold" in kwargs: |
|
postprocess_kwargs["threshold"] = kwargs["threshold"] |
|
return preprocess_params, {}, postprocess_kwargs |
|
|
|
def __call__(self, *args, **kwargs) -> Union[Predictions, List[Prediction]]: |
|
""" |
|
Detect objects (bounding boxes & classes) in the image(s) passed as inputs. |
|
|
|
Args: |
|
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): |
|
The pipeline handles three types of images: |
|
|
|
- A string containing an HTTP(S) link pointing to an image |
|
- A string containing a local path to an image |
|
- An image loaded in PIL directly |
|
|
|
The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the |
|
same format: all as HTTP(S) links, all as local paths, or all as PIL images. |
|
threshold (`float`, *optional*, defaults to 0.9): |
|
The probability necessary to make a prediction. |
|
timeout (`float`, *optional*, defaults to None): |
|
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and |
|
the call may block forever. |
|
|
|
Return: |
|
A list of dictionaries or a list of list of dictionaries containing the result. If the input is a single |
|
image, will return a list of dictionaries, if the input is a list of several images, will return a list of |
|
list of dictionaries corresponding to each image. |
|
|
|
The dictionaries contain the following keys: |
|
|
|
- **label** (`str`) -- The class label identified by the model. |
|
- **score** (`float`) -- The score attributed by the model for that label. |
|
- **box** (`List[Dict[str, int]]`) -- The bounding box of detected object in image's original size. |
|
""" |
|
|
|
return super().__call__(*args, **kwargs) |
|
|
|
def preprocess(self, image, timeout=None): |
|
image = load_image(image, timeout=timeout) |
|
target_size = torch.IntTensor([[image.height, image.width]]) |
|
inputs = self.image_processor(images=[image], return_tensors="pt") |
|
if self.tokenizer is not None: |
|
inputs = self.tokenizer(text=inputs["words"], boxes=inputs["boxes"], return_tensors="pt") |
|
inputs["target_size"] = target_size |
|
return inputs |
|
|
|
def _forward(self, model_inputs): |
|
target_size = model_inputs.pop("target_size") |
|
outputs = self.model(**model_inputs) |
|
model_outputs = outputs.__class__({"target_size": target_size, **outputs}) |
|
if self.tokenizer is not None: |
|
model_outputs["bbox"] = model_inputs["bbox"] |
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs, threshold=0.9): |
|
target_size = model_outputs["target_size"] |
|
if self.tokenizer is not None: |
|
|
|
|
|
height, width = target_size[0].tolist() |
|
|
|
def unnormalize(bbox): |
|
return self._get_bounding_box( |
|
torch.Tensor( |
|
[ |
|
(width * bbox[0] / 1000), |
|
(height * bbox[1] / 1000), |
|
(width * bbox[2] / 1000), |
|
(height * bbox[3] / 1000), |
|
] |
|
) |
|
) |
|
|
|
scores, classes = model_outputs["logits"].squeeze(0).softmax(dim=-1).max(dim=-1) |
|
labels = [self.model.config.id2label[prediction] for prediction in classes.tolist()] |
|
boxes = [unnormalize(bbox) for bbox in model_outputs["bbox"].squeeze(0)] |
|
keys = ["score", "label", "box"] |
|
annotation = [dict(zip(keys, vals)) for vals in zip(scores.tolist(), labels, boxes) if vals[0] > threshold] |
|
else: |
|
|
|
raw_annotations = self.image_processor.post_process_object_detection(model_outputs, threshold, target_size) |
|
raw_annotation = raw_annotations[0] |
|
scores = raw_annotation["scores"] |
|
labels = raw_annotation["labels"] |
|
boxes = raw_annotation["boxes"] |
|
|
|
raw_annotation["scores"] = scores.tolist() |
|
raw_annotation["labels"] = [self.model.config.id2label[label.item()] for label in labels] |
|
raw_annotation["boxes"] = [self._get_bounding_box(box) for box in boxes] |
|
|
|
|
|
keys = ["score", "label", "box"] |
|
annotation = [ |
|
dict(zip(keys, vals)) |
|
for vals in zip(raw_annotation["scores"], raw_annotation["labels"], raw_annotation["boxes"]) |
|
] |
|
|
|
return annotation |
|
|
|
def _get_bounding_box(self, box: "torch.Tensor") -> Dict[str, int]: |
|
""" |
|
Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... } |
|
|
|
Args: |
|
box (`torch.Tensor`): Tensor containing the coordinates in corners format. |
|
|
|
Returns: |
|
bbox (`Dict[str, int]`): Dict containing the coordinates in corners format. |
|
""" |
|
if self.framework != "pt": |
|
raise ValueError("The ObjectDetectionPipeline is only available in PyTorch.") |
|
xmin, ymin, xmax, ymax = box.int().tolist() |
|
bbox = { |
|
"xmin": xmin, |
|
"ymin": ymin, |
|
"xmax": xmax, |
|
"ymax": ymax, |
|
} |
|
return bbox |
|
|