|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" VAN model configuration""" |
|
|
|
from ....configuration_utils import PretrainedConfig |
|
from ....utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VAN_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"Visual-Attention-Network/van-base": ( |
|
"https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" |
|
), |
|
} |
|
|
|
|
|
class VanConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`VanModel`]. It is used to instantiate a VAN model |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the VAN |
|
[Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`): |
|
Patch size to use in each stage's embedding layer. |
|
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): |
|
Stride size to use in each stage's embedding layer to downsample the input. |
|
hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`): |
|
Dimensionality (hidden size) at each stage. |
|
depths (`List[int]`, *optional*, defaults to `[3, 3, 12, 3]`): |
|
Depth (number of layers) for each stage. |
|
mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`): |
|
The expansion ratio for mlp layer at each stage. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in each layer. If string, `"gelu"`, `"relu"`, |
|
`"selu"` and `"gelu_new"` are supported. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
layer_scale_init_value (`float`, *optional*, defaults to 0.01): |
|
The initial value for layer scaling. |
|
drop_path_rate (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for stochastic depth. |
|
dropout_rate (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for dropout. |
|
|
|
Example: |
|
```python |
|
>>> from transformers import VanModel, VanConfig |
|
|
|
>>> # Initializing a VAN van-base style configuration |
|
>>> configuration = VanConfig() |
|
>>> # Initializing a model from the van-base style configuration |
|
>>> model = VanModel(configuration) |
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "van" |
|
|
|
def __init__( |
|
self, |
|
image_size=224, |
|
num_channels=3, |
|
patch_sizes=[7, 3, 3, 3], |
|
strides=[4, 2, 2, 2], |
|
hidden_sizes=[64, 128, 320, 512], |
|
depths=[3, 3, 12, 3], |
|
mlp_ratios=[8, 8, 4, 4], |
|
hidden_act="gelu", |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-6, |
|
layer_scale_init_value=1e-2, |
|
drop_path_rate=0.0, |
|
dropout_rate=0.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.image_size = image_size |
|
self.num_channels = num_channels |
|
self.patch_sizes = patch_sizes |
|
self.strides = strides |
|
self.hidden_sizes = hidden_sizes |
|
self.depths = depths |
|
self.mlp_ratios = mlp_ratios |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.layer_scale_init_value = layer_scale_init_value |
|
self.drop_path_rate = drop_path_rate |
|
self.dropout_rate = dropout_rate |
|
|