|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""M-CTC-T model configuration""" |
|
|
|
from ....configuration_utils import PretrainedConfig |
|
from ....utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class MCTCTConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MCTCTModel`]. It is used to instantiate an |
|
M-CTC-T model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the M-CTC-T |
|
[speechbrain/m-ctc-t-large](https://huggingface.co/speechbrain/m-ctc-t-large) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 8065): |
|
Vocabulary size of the M-CTC-T model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MCTCTModel`]. |
|
hidden_size (`int`, *optional*, defaults to 1536): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 36): |
|
Number of hidden layers in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 6144): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 4): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
attention_head_dim (`int`, *optional*, defaults to 384): |
|
Dimensions of each attention head for each attention layer in the Transformer encoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 920): |
|
The maximum sequence length that this model might ever be used with (after log-mel spectrogram extraction). |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the layer normalization layers. |
|
layerdrop (`float`, *optional*, defaults to 0.3): |
|
The probability of dropping an encoder layer during training. The default 0.3 value is used in the original |
|
implementation. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.3): |
|
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.3): |
|
The dropout ratio for the attention probabilities. |
|
pad_token_id (`int`, *optional*, defaults to 1): |
|
The tokenizer index of the pad token. |
|
bos_token_id (`int`, *optional*, defaults to 0): |
|
The tokenizer index of the bos token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The tokenizer index of the eos token. |
|
conv_glu_dim (`int`, *optional*, defaults to 1): |
|
The dimension of the output of the `Conv1dSubsampler` layer in which GLU is applied on. Though the original |
|
Flashlight code uses the value of 2, here it's adapted to 1 due to transposition differences. |
|
conv_dropout (`int`, *optional*, defaults to 0.3): |
|
The probability of randomly dropping the `Conv1dSubsampler` layer during training. |
|
num_conv_layers (`int`, *optional*, defaults to 1): |
|
Number of convolution layers before applying transformer encoder layers. |
|
conv_kernel (`Sequence[int]`, *optional*, defaults to `(7,)`): |
|
The kernel size of the 1D convolution applied before transformer layers. `len(conv_kernel)` must be equal |
|
to `num_conv_layers`. |
|
conv_stride (`Sequence[int]`, *optional*, defaults to `(3,)`): |
|
The stride length of the 1D convolution applied before transformer layers. `len(conv_stride)` must be equal |
|
to `num_conv_layers`. |
|
input_feat_per_channel (`int`, *optional*, defaults to 80): |
|
Feature dimensions of the channels of the input to the Conv1D layer. |
|
input_channels (`int`, *optional*, defaults to 1): |
|
Number of input channels of the input to the Conv1D layer. |
|
conv_channels (`List[int]`, *optional*): |
|
Channel sizes of intermediate Conv1D layers. |
|
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): |
|
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an |
|
instance of [`MCTCTForCTC`]. |
|
ctc_zero_infinity (`bool`, *optional*, defaults to `False`): |
|
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly |
|
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance |
|
of [`MCTCTForCTC`]. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import MCTCTConfig, MCTCTModel |
|
|
|
>>> # Initializing a M-CTC-T mctct-large style configuration |
|
>>> configuration = MCTCTConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the mctct-large style configuration |
|
>>> model = MCTCTModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "mctct" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=8065, |
|
hidden_size=1536, |
|
num_hidden_layers=36, |
|
intermediate_size=6144, |
|
num_attention_heads=4, |
|
attention_head_dim=384, |
|
max_position_embeddings=920, |
|
layer_norm_eps=1e-5, |
|
layerdrop=0.3, |
|
hidden_act="relu", |
|
initializer_range=0.02, |
|
hidden_dropout_prob=0.3, |
|
attention_probs_dropout_prob=0.3, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
conv_glu_dim=1, |
|
conv_dropout=0.3, |
|
num_conv_layers=1, |
|
conv_kernel=(7,), |
|
conv_stride=(3,), |
|
input_feat_per_channel=80, |
|
input_channels=1, |
|
conv_channels=None, |
|
ctc_loss_reduction="sum", |
|
ctc_zero_infinity=False, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.intermediate_size = intermediate_size |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.layer_norm_eps = layer_norm_eps |
|
self.layerdrop = layerdrop |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.pad_token_id = pad_token_id |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.conv_glu_dim = conv_glu_dim |
|
self.conv_dropout = conv_dropout |
|
self.num_conv_layers = num_conv_layers |
|
self.input_feat_per_channel = input_feat_per_channel |
|
self.input_channels = input_channels |
|
self.conv_channels = conv_channels |
|
self.ctc_loss_reduction = ctc_loss_reduction |
|
self.ctc_zero_infinity = ctc_zero_infinity |
|
|
|
|
|
self.conv_kernel = list(conv_kernel) |
|
self.conv_stride = list(conv_stride) |
|
|
|
if len(self.conv_kernel) != self.num_conv_layers: |
|
raise ValueError( |
|
"Configuration for convolutional module is incorrect. " |
|
"It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " |
|
f"but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, " |
|
f"`config.num_conv_layers = {self.num_conv_layers}`." |
|
) |
|
|