|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" TensorFlow DeiT model.""" |
|
|
|
|
|
from __future__ import annotations |
|
|
|
import collections.abc |
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import tensorflow as tf |
|
|
|
from ...activations_tf import get_tf_activation |
|
from ...modeling_tf_outputs import ( |
|
TFBaseModelOutput, |
|
TFBaseModelOutputWithPooling, |
|
TFImageClassifierOutput, |
|
TFMaskedImageModelingOutput, |
|
) |
|
from ...modeling_tf_utils import ( |
|
TFPreTrainedModel, |
|
TFSequenceClassificationLoss, |
|
get_initializer, |
|
keras_serializable, |
|
unpack_inputs, |
|
) |
|
from ...tf_utils import shape_list, stable_softmax |
|
from ...utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_deit import DeiTConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "DeiTConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 198, 768] |
|
|
|
|
|
_IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224" |
|
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" |
|
|
|
|
|
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"facebook/deit-base-distilled-patch16-224", |
|
|
|
] |
|
|
|
|
|
@dataclass |
|
class TFDeiTForImageClassificationWithTeacherOutput(ModelOutput): |
|
""" |
|
Output type of [`DeiTForImageClassificationWithTeacher`]. |
|
|
|
Args: |
|
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): |
|
Prediction scores as the average of the cls_logits and distillation logits. |
|
cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): |
|
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the |
|
class token). |
|
distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): |
|
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the |
|
distillation token). |
|
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape |
|
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus |
|
the initial embedding outputs. |
|
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in |
|
the self-attention heads. |
|
""" |
|
|
|
logits: tf.Tensor = None |
|
cls_logits: tf.Tensor = None |
|
distillation_logits: tf.Tensor = None |
|
hidden_states: Tuple[tf.Tensor] | None = None |
|
attentions: Tuple[tf.Tensor] | None = None |
|
|
|
|
|
class TFDeiTEmbeddings(tf.keras.layers.Layer): |
|
""" |
|
Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token. |
|
""" |
|
|
|
def __init__(self, config: DeiTConfig, use_mask_token: bool = False, **kwargs) -> None: |
|
super().__init__(**kwargs) |
|
self.config = config |
|
self.use_mask_token = use_mask_token |
|
self.patch_embeddings = TFDeiTPatchEmbeddings(config=config, name="patch_embeddings") |
|
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") |
|
|
|
def build(self, input_shape: tf.TensorShape): |
|
self.cls_token = self.add_weight( |
|
shape=(1, 1, self.config.hidden_size), |
|
initializer=tf.keras.initializers.zeros(), |
|
trainable=True, |
|
name="cls_token", |
|
) |
|
self.distillation_token = self.add_weight( |
|
shape=(1, 1, self.config.hidden_size), |
|
initializer=tf.keras.initializers.zeros(), |
|
trainable=True, |
|
name="distillation_token", |
|
) |
|
self.mask_token = None |
|
if self.use_mask_token: |
|
self.mask_token = self.add_weight( |
|
shape=(1, 1, self.config.hidden_size), |
|
initializer=tf.keras.initializers.zeros(), |
|
trainable=True, |
|
name="mask_token", |
|
) |
|
num_patches = self.patch_embeddings.num_patches |
|
self.position_embeddings = self.add_weight( |
|
shape=(1, num_patches + 2, self.config.hidden_size), |
|
initializer=tf.keras.initializers.zeros(), |
|
trainable=True, |
|
name="position_embeddings", |
|
) |
|
super().build(input_shape) |
|
|
|
def call( |
|
self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None, training: bool = False |
|
) -> tf.Tensor: |
|
embeddings = self.patch_embeddings(pixel_values) |
|
batch_size, seq_length, _ = shape_list(embeddings) |
|
|
|
if bool_masked_pos is not None: |
|
mask_tokens = tf.tile(self.mask_token, [batch_size, seq_length, 1]) |
|
|
|
mask = tf.expand_dims(bool_masked_pos, axis=-1) |
|
mask = tf.cast(mask, dtype=mask_tokens.dtype) |
|
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask |
|
|
|
cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0) |
|
distillation_tokens = tf.repeat(self.distillation_token, repeats=batch_size, axis=0) |
|
embeddings = tf.concat((cls_tokens, distillation_tokens, embeddings), axis=1) |
|
embeddings = embeddings + self.position_embeddings |
|
embeddings = self.dropout(embeddings, training=training) |
|
return embeddings |
|
|
|
|
|
class TFDeiTPatchEmbeddings(tf.keras.layers.Layer): |
|
""" |
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial |
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a |
|
Transformer. |
|
""" |
|
|
|
def __init__(self, config: DeiTConfig, **kwargs) -> None: |
|
super().__init__(**kwargs) |
|
image_size, patch_size = config.image_size, config.patch_size |
|
num_channels, hidden_size = config.num_channels, config.hidden_size |
|
|
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) |
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) |
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
|
|
self.projection = tf.keras.layers.Conv2D( |
|
hidden_size, kernel_size=patch_size, strides=patch_size, name="projection" |
|
) |
|
|
|
def call(self, pixel_values: tf.Tensor) -> tf.Tensor: |
|
batch_size, height, width, num_channels = shape_list(pixel_values) |
|
if tf.executing_eagerly() and num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
) |
|
if tf.executing_eagerly() and (height != self.image_size[0] or width != self.image_size[1]): |
|
raise ValueError( |
|
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." |
|
) |
|
x = self.projection(pixel_values) |
|
batch_size, height, width, num_channels = shape_list(x) |
|
x = tf.reshape(x, (batch_size, height * width, num_channels)) |
|
return x |
|
|
|
|
|
|
|
class TFDeiTSelfAttention(tf.keras.layers.Layer): |
|
def __init__(self, config: DeiTConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number " |
|
f"of attention heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
self.sqrt_att_head_size = math.sqrt(self.attention_head_size) |
|
|
|
self.query = tf.keras.layers.Dense( |
|
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" |
|
) |
|
self.key = tf.keras.layers.Dense( |
|
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" |
|
) |
|
self.value = tf.keras.layers.Dense( |
|
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" |
|
) |
|
self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: |
|
|
|
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) |
|
|
|
|
|
return tf.transpose(tensor, perm=[0, 2, 1, 3]) |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
head_mask: tf.Tensor, |
|
output_attentions: bool, |
|
training: bool = False, |
|
) -> Tuple[tf.Tensor]: |
|
batch_size = shape_list(hidden_states)[0] |
|
mixed_query_layer = self.query(inputs=hidden_states) |
|
mixed_key_layer = self.key(inputs=hidden_states) |
|
mixed_value_layer = self.value(inputs=hidden_states) |
|
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) |
|
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) |
|
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) |
|
|
|
|
|
|
|
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) |
|
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) |
|
attention_scores = tf.divide(attention_scores, dk) |
|
|
|
|
|
attention_probs = stable_softmax(logits=attention_scores, axis=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(inputs=attention_probs, training=training) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = tf.multiply(attention_probs, head_mask) |
|
|
|
attention_output = tf.matmul(attention_probs, value_layer) |
|
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) |
|
|
|
|
|
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) |
|
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
class TFDeiTSelfOutput(tf.keras.layers.Layer): |
|
""" |
|
The residual connection is defined in TFDeiTLayer instead of here (as is the case with other models), due to the |
|
layernorm applied before each block. |
|
""" |
|
|
|
def __init__(self, config: DeiTConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.dense = tf.keras.layers.Dense( |
|
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" |
|
) |
|
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) |
|
|
|
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: |
|
hidden_states = self.dense(inputs=hidden_states) |
|
hidden_states = self.dropout(inputs=hidden_states, training=training) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class TFDeiTAttention(tf.keras.layers.Layer): |
|
def __init__(self, config: DeiTConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.self_attention = TFDeiTSelfAttention(config, name="attention") |
|
self.dense_output = TFDeiTSelfOutput(config, name="output") |
|
|
|
def prune_heads(self, heads): |
|
raise NotImplementedError |
|
|
|
def call( |
|
self, |
|
input_tensor: tf.Tensor, |
|
head_mask: tf.Tensor, |
|
output_attentions: bool, |
|
training: bool = False, |
|
) -> Tuple[tf.Tensor]: |
|
self_outputs = self.self_attention( |
|
hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training |
|
) |
|
attention_output = self.dense_output( |
|
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training |
|
) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
|
|
class TFDeiTIntermediate(tf.keras.layers.Layer): |
|
def __init__(self, config: DeiTConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.dense = tf.keras.layers.Dense( |
|
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" |
|
) |
|
|
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = get_tf_activation(config.hidden_act) |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def call(self, hidden_states: tf.Tensor) -> tf.Tensor: |
|
hidden_states = self.dense(inputs=hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class TFDeiTOutput(tf.keras.layers.Layer): |
|
def __init__(self, config: DeiTConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.dense = tf.keras.layers.Dense( |
|
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" |
|
) |
|
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) |
|
|
|
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: |
|
hidden_states = self.dense(inputs=hidden_states) |
|
hidden_states = self.dropout(inputs=hidden_states, training=training) |
|
hidden_states = hidden_states + input_tensor |
|
|
|
return hidden_states |
|
|
|
|
|
class TFDeiTLayer(tf.keras.layers.Layer): |
|
"""This corresponds to the Block class in the timm implementation.""" |
|
|
|
def __init__(self, config: DeiTConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.attention = TFDeiTAttention(config, name="attention") |
|
self.intermediate = TFDeiTIntermediate(config, name="intermediate") |
|
self.deit_output = TFDeiTOutput(config, name="output") |
|
|
|
self.layernorm_before = tf.keras.layers.LayerNormalization( |
|
epsilon=config.layer_norm_eps, name="layernorm_before" |
|
) |
|
self.layernorm_after = tf.keras.layers.LayerNormalization( |
|
epsilon=config.layer_norm_eps, name="layernorm_after" |
|
) |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
head_mask: tf.Tensor, |
|
output_attentions: bool, |
|
training: bool = False, |
|
) -> Tuple[tf.Tensor]: |
|
attention_outputs = self.attention( |
|
|
|
input_tensor=self.layernorm_before(inputs=hidden_states, training=training), |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
training=training, |
|
) |
|
attention_output = attention_outputs[0] |
|
|
|
|
|
hidden_states = attention_output + hidden_states |
|
|
|
|
|
layer_output = self.layernorm_after(inputs=hidden_states, training=training) |
|
|
|
intermediate_output = self.intermediate(hidden_states=layer_output, training=training) |
|
|
|
|
|
layer_output = self.deit_output( |
|
hidden_states=intermediate_output, input_tensor=hidden_states, training=training |
|
) |
|
outputs = (layer_output,) + attention_outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
|
|
class TFDeiTEncoder(tf.keras.layers.Layer): |
|
def __init__(self, config: DeiTConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.layer = [TFDeiTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
head_mask: tf.Tensor, |
|
output_attentions: bool, |
|
output_hidden_states: bool, |
|
return_dict: bool, |
|
training: bool = False, |
|
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_outputs = layer_module( |
|
hidden_states=hidden_states, |
|
head_mask=head_mask[i], |
|
output_attentions=output_attentions, |
|
training=training, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) |
|
|
|
return TFBaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions |
|
) |
|
|
|
|
|
@keras_serializable |
|
class TFDeiTMainLayer(tf.keras.layers.Layer): |
|
config_class = DeiTConfig |
|
|
|
def __init__( |
|
self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.config = config |
|
|
|
self.embeddings = TFDeiTEmbeddings(config, use_mask_token=use_mask_token, name="embeddings") |
|
self.encoder = TFDeiTEncoder(config, name="encoder") |
|
|
|
self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") |
|
self.pooler = TFDeiTPooler(config, name="pooler") if add_pooling_layer else None |
|
|
|
def get_input_embeddings(self) -> TFDeiTPatchEmbeddings: |
|
return self.embeddings.patch_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
raise NotImplementedError |
|
|
|
def get_head_mask(self, head_mask): |
|
if head_mask is not None: |
|
raise NotImplementedError |
|
else: |
|
head_mask = [None] * self.config.num_hidden_layers |
|
|
|
return head_mask |
|
|
|
@unpack_inputs |
|
def call( |
|
self, |
|
pixel_values: tf.Tensor | None = None, |
|
bool_masked_pos: tf.Tensor | None = None, |
|
head_mask: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: bool = False, |
|
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
|
|
|
|
pixel_values = tf.transpose(pixel_values, (0, 2, 3, 1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask) |
|
|
|
embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos, training=training) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.layernorm(sequence_output, training=training) |
|
pooled_output = self.pooler(sequence_output, training=training) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) |
|
return head_outputs + encoder_outputs[1:] |
|
|
|
return TFBaseModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class TFDeiTPreTrainedModel(TFPreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = DeiTConfig |
|
base_model_prefix = "deit" |
|
main_input_name = "pixel_values" |
|
|
|
|
|
DEIT_START_DOCSTRING = r""" |
|
This model is a TensorFlow |
|
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular |
|
TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior. |
|
|
|
Parameters: |
|
config ([`DeiTConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
DEIT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See |
|
[`DeiTImageProcessor.__call__`] for details. |
|
|
|
head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.", |
|
DEIT_START_DOCSTRING, |
|
) |
|
class TFDeiTModel(TFDeiTPreTrainedModel): |
|
def __init__( |
|
self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs |
|
) -> None: |
|
super().__init__(config, **kwargs) |
|
|
|
self.deit = TFDeiTMainLayer( |
|
config, add_pooling_layer=add_pooling_layer, use_mask_token=use_mask_token, name="deit" |
|
) |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TFBaseModelOutputWithPooling, |
|
config_class=_CONFIG_FOR_DOC, |
|
modality="vision", |
|
expected_output=_EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def call( |
|
self, |
|
pixel_values: tf.Tensor | None = None, |
|
bool_masked_pos: tf.Tensor | None = None, |
|
head_mask: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: bool = False, |
|
) -> Union[Tuple, TFBaseModelOutputWithPooling]: |
|
outputs = self.deit( |
|
pixel_values=pixel_values, |
|
bool_masked_pos=bool_masked_pos, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
return outputs |
|
|
|
|
|
|
|
class TFDeiTPooler(tf.keras.layers.Layer): |
|
def __init__(self, config: DeiTConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.dense = tf.keras.layers.Dense( |
|
units=config.hidden_size, |
|
kernel_initializer=get_initializer(config.initializer_range), |
|
activation="tanh", |
|
name="dense", |
|
) |
|
|
|
def call(self, hidden_states: tf.Tensor) -> tf.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(inputs=first_token_tensor) |
|
|
|
return pooled_output |
|
|
|
|
|
class TFDeitPixelShuffle(tf.keras.layers.Layer): |
|
"""TF layer implementation of torch.nn.PixelShuffle""" |
|
|
|
def __init__(self, upscale_factor: int, **kwargs) -> None: |
|
super().__init__(**kwargs) |
|
if not isinstance(upscale_factor, int) or upscale_factor < 2: |
|
raise ValueError(f"upscale_factor must be an integer value >= 2 got {upscale_factor}") |
|
self.upscale_factor = upscale_factor |
|
|
|
def call(self, x: tf.Tensor) -> tf.Tensor: |
|
hidden_states = x |
|
batch_size, _, _, num_input_channels = shape_list(hidden_states) |
|
block_size_squared = self.upscale_factor**2 |
|
output_depth = int(num_input_channels / block_size_squared) |
|
|
|
|
|
|
|
|
|
permutation = tf.constant( |
|
[[i + j * block_size_squared for i in range(block_size_squared) for j in range(output_depth)]] |
|
) |
|
hidden_states = tf.gather(params=hidden_states, indices=tf.tile(permutation, [batch_size, 1]), batch_dims=-1) |
|
hidden_states = tf.nn.depth_to_space(hidden_states, block_size=self.upscale_factor, data_format="NHWC") |
|
return hidden_states |
|
|
|
|
|
class TFDeitDecoder(tf.keras.layers.Layer): |
|
def __init__(self, config: DeiTConfig, **kwargs) -> None: |
|
super().__init__(**kwargs) |
|
self.conv2d = tf.keras.layers.Conv2D( |
|
filters=config.encoder_stride**2 * config.num_channels, kernel_size=1, name="0" |
|
) |
|
self.pixel_shuffle = TFDeitPixelShuffle(config.encoder_stride, name="1") |
|
|
|
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor: |
|
hidden_states = inputs |
|
hidden_states = self.conv2d(hidden_states) |
|
hidden_states = self.pixel_shuffle(hidden_states) |
|
return hidden_states |
|
|
|
|
|
@add_start_docstrings( |
|
"DeiT Model with a decoder on top for masked image modeling, as proposed in" |
|
" [SimMIM](https://arxiv.org/abs/2111.09886).", |
|
DEIT_START_DOCSTRING, |
|
) |
|
class TFDeiTForMaskedImageModeling(TFDeiTPreTrainedModel): |
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, use_mask_token=True, name="deit") |
|
self.decoder = TFDeitDecoder(config, name="decoder") |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=TFMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) |
|
def call( |
|
self, |
|
pixel_values: tf.Tensor | None = None, |
|
bool_masked_pos: tf.Tensor | None = None, |
|
head_mask: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: bool = False, |
|
) -> Union[tuple, TFMaskedImageModelingOutput]: |
|
r""" |
|
bool_masked_pos (`tf.Tensor` of type bool and shape `(batch_size, num_patches)`): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
|
|
Returns: |
|
|
|
Examples: |
|
```python |
|
>>> from transformers import AutoImageProcessor, TFDeiTForMaskedImageModeling |
|
>>> import tensorflow as tf |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") |
|
>>> model = TFDeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224") |
|
|
|
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 |
|
>>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values |
|
>>> # create random boolean mask of shape (batch_size, num_patches) |
|
>>> bool_masked_pos = tf.cast(tf.random.uniform((1, num_patches), minval=0, maxval=2, dtype=tf.int32), tf.bool) |
|
|
|
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) |
|
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction |
|
>>> list(reconstructed_pixel_values.shape) |
|
[1, 3, 224, 224] |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.deit( |
|
pixel_values, |
|
bool_masked_pos=bool_masked_pos, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
|
|
sequence_output = sequence_output[:, 1:-1] |
|
batch_size, sequence_length, num_channels = shape_list(sequence_output) |
|
height = width = int(sequence_length**0.5) |
|
sequence_output = tf.reshape(sequence_output, (batch_size, height, width, num_channels)) |
|
|
|
|
|
reconstructed_pixel_values = self.decoder(sequence_output, training=training) |
|
|
|
|
|
|
|
reconstructed_pixel_values = tf.transpose(reconstructed_pixel_values, (0, 3, 1, 2)) |
|
|
|
masked_im_loss = None |
|
if bool_masked_pos is not None: |
|
size = self.config.image_size // self.config.patch_size |
|
bool_masked_pos = tf.reshape(bool_masked_pos, (-1, size, size)) |
|
mask = tf.repeat(bool_masked_pos, self.config.patch_size, 1) |
|
mask = tf.repeat(mask, self.config.patch_size, 2) |
|
mask = tf.expand_dims(mask, 1) |
|
mask = tf.cast(mask, tf.float32) |
|
|
|
reconstruction_loss = tf.keras.losses.mean_absolute_error( |
|
|
|
tf.transpose(pixel_values, (1, 2, 3, 0)), |
|
tf.transpose(reconstructed_pixel_values, (1, 2, 3, 0)), |
|
) |
|
reconstruction_loss = tf.expand_dims(reconstruction_loss, 0) |
|
total_loss = tf.reduce_sum(reconstruction_loss * mask) |
|
num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels |
|
masked_im_loss = total_loss / num_masked_pixels |
|
masked_im_loss = tf.reshape(masked_im_loss, (1,)) |
|
|
|
if not return_dict: |
|
output = (reconstructed_pixel_values,) + outputs[1:] |
|
return ((masked_im_loss,) + output) if masked_im_loss is not None else output |
|
|
|
return TFMaskedImageModelingOutput( |
|
loss=masked_im_loss, |
|
reconstruction=reconstructed_pixel_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of |
|
the [CLS] token) e.g. for ImageNet. |
|
""", |
|
DEIT_START_DOCSTRING, |
|
) |
|
class TFDeiTForImageClassification(TFDeiTPreTrainedModel, TFSequenceClassificationLoss): |
|
def __init__(self, config: DeiTConfig): |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit") |
|
|
|
|
|
self.classifier = ( |
|
tf.keras.layers.Dense(config.num_labels, name="classifier") |
|
if config.num_labels > 0 |
|
else tf.keras.layers.Activation("linear", name="classifier") |
|
) |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=TFImageClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def call( |
|
self, |
|
pixel_values: tf.Tensor | None = None, |
|
head_mask: tf.Tensor | None = None, |
|
labels: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: bool = False, |
|
) -> Union[tf.Tensor, TFImageClassifierOutput]: |
|
r""" |
|
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, TFDeiTForImageClassification |
|
>>> import tensorflow as tf |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> tf.keras.utils.set_random_seed(3) # doctest: +IGNORE_RESULT |
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> # note: we are loading a TFDeiTForImageClassificationWithTeacher from the hub here, |
|
>>> # so the head will be randomly initialized, hence the predictions will be random |
|
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") |
|
>>> model = TFDeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224") |
|
|
|
>>> inputs = image_processor(images=image, return_tensors="tf") |
|
>>> outputs = model(**inputs) |
|
>>> logits = outputs.logits |
|
>>> # model predicts one of the 1000 ImageNet classes |
|
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0] |
|
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)]) |
|
Predicted class: little blue heron, Egretta caerulea |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.deit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.classifier(sequence_output[:, 0, :]) |
|
|
|
|
|
loss = None if labels is None else self.hf_compute_loss(labels, logits) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TFImageClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of |
|
the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. |
|
|
|
.. warning:: |
|
|
|
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet |
|
supported. |
|
""", |
|
DEIT_START_DOCSTRING, |
|
) |
|
class TFDeiTForImageClassificationWithTeacher(TFDeiTPreTrainedModel): |
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit") |
|
|
|
|
|
self.cls_classifier = ( |
|
tf.keras.layers.Dense(config.num_labels, name="cls_classifier") |
|
if config.num_labels > 0 |
|
else tf.keras.layers.Activation("linear", name="cls_classifier") |
|
) |
|
self.distillation_classifier = ( |
|
tf.keras.layers.Dense(config.num_labels, name="distillation_classifier") |
|
if config.num_labels > 0 |
|
else tf.keras.layers.Activation("linear", name="distillation_classifier") |
|
) |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_IMAGE_CLASS_CHECKPOINT, |
|
output_type=TFDeiTForImageClassificationWithTeacherOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, |
|
) |
|
def call( |
|
self, |
|
pixel_values: tf.Tensor | None = None, |
|
head_mask: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: bool = False, |
|
) -> Union[tuple, TFDeiTForImageClassificationWithTeacherOutput]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.deit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
cls_logits = self.cls_classifier(sequence_output[:, 0, :]) |
|
distillation_logits = self.distillation_classifier(sequence_output[:, 1, :]) |
|
|
|
|
|
logits = (cls_logits + distillation_logits) / 2 |
|
|
|
if not return_dict: |
|
output = (logits, cls_logits, distillation_logits) + outputs[1:] |
|
return output |
|
|
|
return TFDeiTForImageClassificationWithTeacherOutput( |
|
logits=logits, |
|
cls_logits=cls_logits, |
|
distillation_logits=distillation_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|