|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch CPMAnt""" |
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from ...activations import ACT2FN |
|
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from ...modeling_utils import PreTrainedModel |
|
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging |
|
from .configuration_cpmant import CpmAntConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "openbmb/cpm-ant-10b" |
|
_CONFIG_FOR_DOC = "CpmAntConfig" |
|
|
|
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"openbmb/cpm-ant-10b", |
|
|
|
] |
|
|
|
|
|
class CpmAntLayerNorm(nn.Module): |
|
""" |
|
We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details." |
|
""" |
|
|
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__() |
|
|
|
self.eps = config.eps |
|
self.dim_norm = config.hidden_size |
|
self.weight = nn.Parameter(torch.empty(config.hidden_size)) |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) |
|
""" |
|
if hidden_states.size(-1) != self.dim_norm: |
|
raise AssertionError("hidden_states.size(-1) != self.dim_norm") |
|
old_dtype = hidden_states.dtype |
|
variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True) |
|
hidden_states = (hidden_states * torch.rsqrt(variance + self.eps)).to(old_dtype) * self.weight |
|
return hidden_states |
|
|
|
|
|
class CpmAntAttention(nn.Module): |
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__() |
|
self.dim_model = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.dim_head = config.dim_head |
|
|
|
self.project_q = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) |
|
self.project_k = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) |
|
self.project_v = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) |
|
|
|
self.attention_out = nn.Linear(self.num_heads * self.dim_head, self.dim_model, bias=False) |
|
|
|
self.softmax = torch.nn.Softmax(dim=-1) |
|
|
|
if config.dropout_p is not None: |
|
self.dropout = torch.nn.Dropout(p=config.dropout_p) |
|
else: |
|
self.dropout = None |
|
|
|
def forward( |
|
self, |
|
hidden_q: torch.Tensor, |
|
hidden_kv: torch.Tensor, |
|
attention_mask: torch.BoolTensor, |
|
position_bias: torch.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
): |
|
""" |
|
Args: |
|
hidden_q (`torch.Tensor`): |
|
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences. |
|
hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)): |
|
Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)` |
|
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): |
|
Avoid invalid areas to participate in the calculation of self-attention. |
|
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): |
|
Provide positional information to self-attention block. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*): |
|
Cached past key and value projection states. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
batch_size = hidden_q.size(0) |
|
len_q = hidden_q.size(1) |
|
len_k = hidden_kv.size(1) |
|
|
|
query = self.project_q(hidden_q) |
|
key = self.project_k(hidden_kv) |
|
value = self.project_v(hidden_kv) |
|
|
|
query = query.view(batch_size, len_q, self.num_heads, self.dim_head).permute(0, 2, 1, 3) |
|
key = key.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3) |
|
value = value.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3) |
|
|
|
if past_key_values is not None: |
|
key = torch.cat([past_key_values[0], key], dim=-2) |
|
value = torch.cat([past_key_values[1], value], dim=-2) |
|
len_k = key.size(-2) |
|
|
|
|
|
score = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.dim_head) |
|
score = score + position_bias |
|
|
|
score = torch.masked_fill( |
|
score, |
|
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False), |
|
torch.scalar_tensor(float("-inf"), device=score.device, dtype=score.dtype), |
|
) |
|
score = self.softmax(score) |
|
|
|
score = torch.masked_fill( |
|
score, |
|
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False), |
|
torch.scalar_tensor(0, device=score.device, dtype=score.dtype), |
|
) |
|
if output_attentions: |
|
attn_weights = score |
|
else: |
|
attn_weights = None |
|
|
|
if self.dropout is not None: |
|
score = self.dropout(score) |
|
|
|
|
|
score = torch.matmul(score, value) |
|
|
|
score = score.view(batch_size, self.num_heads, len_q, self.dim_head).permute(0, 2, 1, 3) |
|
score = score.contiguous().view(batch_size, len_q, self.num_heads * self.dim_head) |
|
|
|
score = self.attention_out(score) |
|
|
|
past_key_values = None |
|
if use_cache: |
|
past_key_values = (key, value) |
|
|
|
return score, attn_weights, past_key_values |
|
|
|
|
|
class CpmAntSelfAttentionBlock(nn.Module): |
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__() |
|
self.layernorm_before_attention = CpmAntLayerNorm(config) |
|
self.self_attention = CpmAntAttention(config) |
|
if config.dropout_p: |
|
self.dropout = torch.nn.Dropout(config.dropout_p) |
|
else: |
|
self.dropout = None |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
position_bias: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`): |
|
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences. |
|
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): |
|
Avoid invalid areas to participate in the calculation of self-attention. |
|
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): |
|
Provide positional information to self-attention block. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
past_key_values (`Tuple(torch.FloatTensor)`, *optional*): |
|
Cached past key and value projection states. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
outputs = self.layernorm_before_attention(hidden_states) |
|
outputs = self.self_attention( |
|
outputs, outputs, attention_mask, position_bias, output_attentions, past_key_values, use_cache |
|
) |
|
|
|
outputs, attn_weights, current_key_value = outputs |
|
|
|
if self.dropout is not None: |
|
outputs = self.dropout(outputs) |
|
hidden_states = hidden_states + outputs |
|
|
|
return hidden_states, attn_weights, current_key_value |
|
|
|
|
|
class CpmAntDenseGatedACT(nn.Module): |
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__() |
|
self.w_0 = nn.Linear(config.hidden_size, config.dim_ff, bias=False) |
|
self.w_1 = nn.Linear(config.hidden_size, config.dim_ff, bias=False) |
|
self.act = torch.nn.GELU() |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
"""Transform an input tensor from one feature space to another via a nonlinear operation |
|
|
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) |
|
""" |
|
gate_score = self.act(self.w_0(hidden_states)) |
|
hidden_states = self.w_1(hidden_states) |
|
|
|
hidden_states = gate_score * hidden_states |
|
return hidden_states |
|
|
|
|
|
class CpmAntFeedForward(nn.Module): |
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__() |
|
self.w_in = CpmAntDenseGatedACT(config) |
|
if config.dropout_p is not None: |
|
self.dropout = torch.nn.Dropout(config.dropout_p) |
|
else: |
|
self.dropout = None |
|
|
|
self.w_out = nn.Linear(config.dim_ff, config.hidden_size, bias=False) |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) |
|
""" |
|
hidden_states = self.w_in(hidden_states) |
|
|
|
if self.dropout is not None: |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
hidden_states = self.w_out(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class CpmAntFFNBlock(nn.Module): |
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__() |
|
self.layernorm_before_ffn = CpmAntLayerNorm(config) |
|
self.ffn = CpmAntFeedForward(config) |
|
if config.dropout_p: |
|
self.dropout = torch.nn.Dropout(config.dropout_p) |
|
else: |
|
self.dropout = None |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`): |
|
Hidden states before feed forward layer. |
|
""" |
|
ln_outputs = self.layernorm_before_ffn(hidden_states) |
|
outputs = self.ffn(ln_outputs) |
|
if self.dropout is not None: |
|
outputs = self.dropout(outputs) |
|
hidden_states = hidden_states + outputs |
|
return hidden_states |
|
|
|
|
|
class CpmAntTransformerBlock(nn.Module): |
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__() |
|
self.self_att = CpmAntSelfAttentionBlock(config) |
|
self.ffn = CpmAntFFNBlock(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
position_bias: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
Input to the layer of shape `(batch, seq_len, dim_model)` |
|
attention_mask (`torch.Tensor`): |
|
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)` |
|
position_bias (`torch.Tensor`): |
|
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)` |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*): |
|
Cached past key and value projection states |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
hidden_states = self.self_att( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_bias=position_bias, |
|
output_attentions=output_attentions, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states, attn_weights, current_key_value = hidden_states |
|
|
|
hidden_states = self.ffn(hidden_states) |
|
|
|
return hidden_states, attn_weights, current_key_value |
|
|
|
|
|
class CpmAntEncoder(nn.Module): |
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__() |
|
self.num_layers = config.num_hidden_layers |
|
self.layers = nn.ModuleList([CpmAntTransformerBlock(config) for ith in range(self.num_layers)]) |
|
|
|
self.output_layernorm = CpmAntLayerNorm(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
position_bias: torch.Tensor, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
Input to the layer of shape `(batch, seq_len, dim_model)` |
|
attention_mask (`torch.Tensor`): |
|
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)` |
|
position_bias (`torch.Tensor`): |
|
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)` |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. |
|
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*): |
|
Cached past key and value projection states |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
current_key_values = () if use_cache else None |
|
|
|
for i, layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
layer_outputs = layer( |
|
hidden_states, |
|
attention_mask, |
|
position_bias, |
|
output_attentions=output_attentions, |
|
past_key_values=past_key_values[i] if past_key_values else None, |
|
use_cache=use_cache, |
|
) |
|
hidden_states, attn_weights, current_key_value = layer_outputs |
|
if output_attentions: |
|
all_self_attns += (attn_weights,) |
|
if current_key_value is not None: |
|
current_key_values = current_key_values + (current_key_value,) |
|
|
|
hidden_states = self.output_layernorm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
return hidden_states, current_key_values, all_hidden_states, all_self_attns |
|
|
|
|
|
|
|
class CpmAntIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class CpmAntSegmentPositionEmbedding(nn.Module): |
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__() |
|
|
|
self.num_heads = config.num_attention_heads |
|
self.num_buckets = config.position_bias_num_buckets |
|
self.max_distance = config.position_bias_max_distance |
|
self.num_segments = config.segment_types |
|
|
|
self.relative_attention_bias = nn.Parameter( |
|
torch.empty( |
|
config.segment_types * config.segment_types + config.position_bias_num_buckets, |
|
config.num_attention_heads, |
|
) |
|
) |
|
|
|
def forward( |
|
self, |
|
key_pos: torch.Tensor, |
|
query_pos: torch.Tensor, |
|
key_segment: torch.Tensor, |
|
query_segment: torch.Tensor, |
|
): |
|
with torch.no_grad(): |
|
batch = key_pos.size(0) |
|
keylen = key_pos.size(1) |
|
querylen = query_pos.size(1) |
|
|
|
if key_pos.size(0) != query_pos.size(0): |
|
raise AssertionError( |
|
f"key_pos.size(0) should be equal to query_pos.size(0), but got {key_pos.size(0)} and {query_pos.size(0)}!" |
|
) |
|
if keylen != key_segment.size(1) or querylen != query_segment.size(1): |
|
raise AssertionError( |
|
f"keylen should be equal to key_segment.size(1), but got {keylen} and {key_segment.size(1)}!" |
|
) |
|
if querylen != query_segment.size(1): |
|
raise AssertionError( |
|
f"querylen should be equal to query_segment.size(1), but got {querylen} and {query_segment.szie(1)}!" |
|
) |
|
|
|
key_pos = key_pos.view(batch, -1, keylen) |
|
query_pos = query_pos.view(batch, querylen, -1) |
|
key_segment = key_segment.view(batch, -1, keylen) |
|
query_segment = query_segment.view(batch, querylen, -1) |
|
|
|
relative_position_bucket = self._segment_relative_position_bucket(query_segment, key_segment) |
|
relative_position_bucket = relative_position_bucket + self.num_buckets |
|
|
|
|
|
absolute_position_bucket = self._position_bucket( |
|
torch.arange(keylen, dtype=torch.int32, device=relative_position_bucket.device)[None, :] |
|
- torch.arange(querylen, dtype=torch.int32, device=relative_position_bucket.device)[:, None], |
|
num_buckets=self.num_buckets, |
|
max_distance=self.max_distance, |
|
) |
|
relative_position_bucket = torch.where( |
|
(key_segment == query_segment), |
|
absolute_position_bucket[None, :, :], |
|
relative_position_bucket, |
|
) |
|
|
|
|
|
embeds = F.embedding(relative_position_bucket, self.relative_attention_bias) |
|
|
|
embeds = embeds.permute(0, 3, 1, 2).contiguous() |
|
return embeds |
|
|
|
def _segment_relative_position_bucket(self, query_segment, key_segment): |
|
return query_segment * self.num_segments + key_segment |
|
|
|
def _position_bucket(self, relative_position, num_buckets=32, max_distance=128): |
|
relative_buckets = 0 |
|
|
|
num_buckets //= 2 |
|
relative_buckets = (relative_position > 0).to(torch.int32) * num_buckets |
|
relative_position = torch.abs(relative_position) |
|
max_exact = num_buckets // 2 |
|
is_small = relative_position < max_exact |
|
relative_postion_if_large = max_exact + ( |
|
torch.log(relative_position.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).to(torch.int32) |
|
relative_postion_if_large = torch.min( |
|
relative_postion_if_large, |
|
torch.full_like(relative_postion_if_large, num_buckets - 1), |
|
) |
|
relative_buckets += torch.where(is_small, relative_position.to(torch.int32), relative_postion_if_large) |
|
return relative_buckets |
|
|
|
|
|
|
|
class CpmAntOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class CpmAntPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = CpmAntConfig |
|
base_model_prefix = "cpmant" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.init_std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.init_std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, CpmAntLayerNorm): |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, CpmAntSegmentPositionEmbedding): |
|
module.relative_attention_bias.data.normal_(mean=0.0, std=self.config.init_std) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, CpmAntEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
CPMANT_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters |
|
config ([`~CpmAntConfig`]): Model configuration class with all the parameters of the |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
CPMANT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare CPMAnt Model outputting raw hidden-states without any specific head on top.", |
|
CPMANT_START_DOCSTRING, |
|
) |
|
class CpmAntModel(CpmAntPreTrainedModel): |
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__(config) |
|
self.encoder = CpmAntEncoder(config) |
|
self.segment_embedding = nn.Embedding(config.segment_types, config.hidden_size) |
|
self.input_embedding = nn.Embedding( |
|
config.vocab_size + config.prompt_types * config.prompt_length, config.hidden_size |
|
) |
|
self.position_bias = CpmAntSegmentPositionEmbedding(config) |
|
self.prompt_length = config.prompt_length |
|
self.vocab_size = config.vocab_size |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.input_embedding |
|
|
|
def set_input_embeddings(self, embeddings, **kwargs): |
|
self.input_embedding = embeddings |
|
|
|
def _prepare_attention_mask(self, input_ids, span, context, length): |
|
batch = input_ids.size(0) |
|
seqlen = input_ids.size(1) |
|
device = input_ids.device |
|
directional_mask_2d = torch.arange(seqlen, device=device) <= torch.arange(seqlen, device=device).view(-1, 1) |
|
attention_mask = context[:, None, :] | ( |
|
context[:, :, None].logical_not() & directional_mask_2d.view(1, seqlen, seqlen) |
|
) |
|
attention_mask = attention_mask & (span[:, None, :] == span[:, :, None]) |
|
|
|
mask_1d = ( |
|
torch.tensor(list(range(seqlen - self.prompt_length))[::-1], device=device)[None, :].repeat(batch, 1) |
|
< length[:, None] |
|
) |
|
mask_1d = torch.cat((torch.ones(batch, self.prompt_length, device=device).bool(), mask_1d), dim=1) |
|
attention_mask = mask_1d.view(batch, seqlen, 1) & mask_1d.view(batch, 1, seqlen) & attention_mask |
|
return attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
if input_ids.dtype != torch.int32: |
|
input_ids = input_ids.to(torch.int32) |
|
dtype, device = input_ids.dtype, input_ids.device |
|
segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device) |
|
length = (segment != 0).sum(-1).to(dtype=dtype, device=device) |
|
input_ids = torch.cat( |
|
( |
|
torch.arange( |
|
self.prompt_length * 2 + self.vocab_size, |
|
self.prompt_length * 3 + self.vocab_size, |
|
dtype=dtype, |
|
device=device, |
|
).repeat(input_ids.size(0), 1), |
|
input_ids, |
|
), |
|
dim=1, |
|
) |
|
batch, seq_length = input_ids.size() |
|
segment = torch.cat((torch.zeros(batch, self.prompt_length, dtype=dtype, device=device), segment), dim=1) |
|
context = torch.full((batch, seq_length), 1, dtype=dtype, device=device) |
|
position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1) |
|
span = torch.full((batch, seq_length), 0, dtype=dtype, device=device) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * self.encoder.num_layers) |
|
input_ids = input_ids.contiguous() |
|
hidden_states = self.input_embedding(input_ids) |
|
segment_states = self.segment_embedding(segment) |
|
hidden_states = hidden_states + segment_states |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
segment_states = self.segment_embedding(segment) |
|
hidden_states = self.input_embedding(input_ids) + segment_states[:, -1:, :] |
|
|
|
attention_mask = self._prepare_attention_mask(input_ids, span, context, length) |
|
position_bias = self.position_bias(position, position, segment, segment) |
|
|
|
attention_mask = attention_mask[:, past_length:, :] |
|
position_bias = position_bias[:, :, past_length:, :] |
|
hidden_states = hidden_states[:, past_length:, :] |
|
|
|
hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder( |
|
hidden_states, |
|
attention_mask, |
|
position_bias, |
|
output_attentions, |
|
output_hidden_states, |
|
past_key_values, |
|
use_cache, |
|
) |
|
|
|
if past_length == 0: |
|
hidden_states = hidden_states[:, self.prompt_length :, :] |
|
|
|
if all_attentions is not None: |
|
new_attentions = () |
|
for attention in all_attentions: |
|
new_attentions += (attention[:, :, self.prompt_length :, self.prompt_length :],) |
|
all_attentions = new_attentions |
|
if all_hidden_states is not None: |
|
new_hidden_states = () |
|
for hidden_state in all_hidden_states: |
|
new_hidden_states += (hidden_state[:, self.prompt_length :, :],) |
|
all_hidden_states = new_hidden_states |
|
|
|
if not return_dict: |
|
return tuple( |
|
v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The CPMAnt Model with a language modeling head on top (linear layer with weights tied to the input embeddings). |
|
""", |
|
CPMANT_START_DOCSTRING, |
|
) |
|
class CpmAntForCausalLM(CpmAntPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: CpmAntConfig): |
|
super().__init__(config) |
|
self.cpmant = CpmAntModel(config) |
|
|
|
|
|
self.lm_head = nn.Linear( |
|
config.hidden_size, config.vocab_size + config.prompt_types * config.prompt_length, bias=False |
|
) |
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=CausalLMOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
return_dict: Optional[bool] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the |
|
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. |
|
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
CPMAnt will process attention mask automatically, this parameter is a dummy parameter for |
|
text-generation pipeline. |
|
|
|
Example: |
|
|
|
Text Generation with CpmAntForCausalLM. |
|
```python |
|
>>> from transformers import CPMAntTokenizer, CpmAntForCausalLM |
|
|
|
>>> texts = "今天天气不错," |
|
>>> model = CpmAntForCausalLM.from_pretrained("openbmb/cpm-ant-10b") |
|
>>> tokenizer = CPMAntTokenizer.from_pretrained("openbmb/cpm-ant-10b") |
|
>>> input_ids = tokenizer(texts, return_tensors="pt") |
|
>>> outputs = model.generate(**input_ids) |
|
>>> output_texts = tokenizer.batch_decode(outputs) |
|
>>> print(output_texts) |
|
['今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的'] |
|
``` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
model_output = self.cpmant( |
|
input_ids, output_attentions, output_hidden_states, past_key_values, use_cache, return_dict |
|
) |
|
hidden_states = model_output.last_hidden_state if return_dict else model_output[0] |
|
|
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_func = CrossEntropyLoss() |
|
loss = loss_func(logits.view(-1, logits.size(-1)), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + model_output[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=model_output.past_key_values, |
|
hidden_states=model_output.hidden_states, |
|
attentions=model_output.attentions, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.cpmant.input_embedding |
|
|
|
def set_input_embeddings(self, embeddings): |
|
self.cpmant.input_embedding = embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation(self, input_ids, **kwargs): |
|
input_ids = input_ids.int() |
|
|
|
if "attention_mask" in kwargs: |
|
kwargs["attention_mask"] = torch.zeros(1, 1) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"use_cache": kwargs["use_cache"], |
|
"past_key_values": kwargs.get("past_key_values", None), |
|
} |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
past_key_values = [list(each) if each is not None else each for each in past_key_values] |
|
for key_value_layer in past_key_values: |
|
key_value_layer[0] = key_value_layer[0][beam_idx] |
|
key_value_layer[1] = key_value_layer[1][beam_idx] |
|
return past_key_values |
|
|