|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for OpenAI GPT.""" |
|
|
|
|
|
from typing import List, Optional, Tuple |
|
|
|
from tokenizers import pre_tokenizers |
|
|
|
from ...tokenization_utils_fast import PreTrainedTokenizerFast |
|
from ...utils import logging |
|
from .tokenization_clip import CLIPTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/vocab.json", |
|
}, |
|
"merges_file": { |
|
"openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/merges.txt", |
|
}, |
|
"tokenizer_file": { |
|
"openai/clip-vit-base-patch32": ( |
|
"https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/tokenizer.json" |
|
), |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"openai/clip-vit-base-patch32": 77, |
|
} |
|
|
|
|
|
class CLIPTokenizerFast(PreTrainedTokenizerFast): |
|
""" |
|
Construct a "fast" CLIP tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level |
|
Byte-Pair-Encoding. |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should |
|
refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
merges_file (`str`): |
|
Path to the merges file. |
|
unk_token (`str`, *optional*, defaults to `<|endoftext|>`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (`str`, *optional*, defaults to `<|startoftext|>`): |
|
The beginning of sequence token. |
|
eos_token (`str`, *optional*, defaults to `<|endoftext|>`): |
|
The end of sequence token. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
slow_tokenizer_class = CLIPTokenizer |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
merges_file=None, |
|
tokenizer_file=None, |
|
unk_token="<|endoftext|>", |
|
bos_token="<|startoftext|>", |
|
eos_token="<|endoftext|>", |
|
pad_token="<|endoftext|>", |
|
**kwargs, |
|
): |
|
super().__init__( |
|
vocab_file, |
|
merges_file, |
|
tokenizer_file=tokenizer_file, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
pad_token=pad_token, |
|
**kwargs, |
|
) |
|
|
|
if not isinstance(self.backend_tokenizer.pre_tokenizer, pre_tokenizers.Sequence): |
|
raise ValueError( |
|
"The `backend_tokenizer` provided does not match the expected format. The CLIP tokenizer has been" |
|
" heavily modified from transformers version 4.17.0. You need to convert the tokenizer you are using" |
|
" to be compatible with this version.The easiest way to do so is" |
|
' `CLIPTokenizerFast.from_pretrained("path_to_local_folder_or_hub_repo, from_slow=True)`. If you want' |
|
" to use your existing tokenizer, you will have to revert to a version prior to 4.17.0 of" |
|
" transformers." |
|
) |
|
|
|
self._wrap_decode_method_backend_tokenizer() |
|
|
|
|
|
def _wrap_decode_method_backend_tokenizer(self): |
|
orig_decode_method = self.backend_tokenizer.decode |
|
|
|
def new_decode_method(*args, **kwargs): |
|
text = orig_decode_method(*args, **kwargs) |
|
text = text.replace(self.backend_tokenizer.model.end_of_word_suffix, " ").strip() |
|
return text |
|
|
|
self.backend_tokenizer.decode = new_decode_method |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A CLIP sequence has the following format: |
|
|
|
- single sequence: `<|startoftext|> X <|endoftext|>` |
|
|
|
Pairs of sequences are not the expected use case, but they will be handled without a separator. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
bos_token = [self.bos_token_id] |
|
eos_token = [self.eos_token_id] |
|
|
|
if token_ids_1 is None: |
|
return bos_token + token_ids_0 + eos_token |
|
return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of |
|
zeros is returned. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of zeros. |
|
""" |
|
bos_token = [self.bos_token_id] |
|
eos_token = [self.eos_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(bos_token + token_ids_0 + eos_token) * [0] |
|
return len(bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token) * [0] |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
files = self._tokenizer.model.save(save_directory, name=filename_prefix) |
|
return tuple(files) |
|
|