mart9992's picture
m
9231ab9
raw
history blame contribute delete
No virus
105 kB
# coding=utf-8
# Copyright 2023 The LAION-AI Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CLAP model."""
import collections
import math
from dataclasses import dataclass
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPooling,
BaseModelOutputWithPoolingAndCrossAttentions,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_clap import ClapAudioConfig, ClapConfig, ClapTextConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "laion/clap-htsat-fused"
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"laion/clap-htsat-fused",
"laion/clap-htsat-unfused",
# See all clap models at https://huggingface.co/models?filter=clap
]
# Adapted from: https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/utils.py#L191
def interpolate(hidden_states, ratio):
"""
Interpolate data in time domain. This is used to compensate the resolution reduction in downsampling of a CNN.
Args:
hidden_states (`torch.FloatTensor` of shape (batch_size, time_length, classes_num)):
Input hidden states
ratio (`int`):
The ratio of the length of the output to the length of the input.
"""
(batch_size, time_length, classes_num) = hidden_states.shape
upsampled = hidden_states[:, :, None, :].repeat(1, 1, ratio, 1)
upsampled = upsampled.reshape(batch_size, time_length * ratio, classes_num)
return upsampled
# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L249
def window_partition(hidden_states, window_size):
"""
Returns the resized hidden states. The output shape should be `(batch_size * num_windows, window_size, window_size,
num_channels)`
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, height, width, num_channels)`):
Input hidden states
window_size (`int`):
Window size
"""
batch_size, height, width, num_channels = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
)
windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
return windows
# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L263
def window_reverse(windows, window_size, height, width):
"""
Args:
windows (`torch.FloatTensor` of shape `(num_windows * batch_size, window_size, window_size, num_channels)`):
Input windows
window_size (`int`):
Window size
height (`int`):
Height of the resized audio
width (`int`):
Width of the resized audio
"""
batch_size = int(windows.shape[0] / (height * width / window_size / window_size))
hidden_states = windows.view(batch_size, height // window_size, width // window_size, window_size, window_size, -1)
hidden_states = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(batch_size, height, width, -1)
return hidden_states
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html#CLIP-loss-function
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
labels = torch.arange(len(logits), device=logits.device)
return nn.functional.cross_entropy(logits, labels)
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Clap
class ClapTextModelOutput(ModelOutput):
"""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The text embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
text_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class ClapAudioModelOutput(ModelOutput):
"""
ClapAudio model output to mimic the output of the original implementation.
Args:
audio_embeds (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
The Audio embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
audio_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Clap, vision->audio, Vision->Audio, image->audio
class ClapOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for audio-text similarity.
logits_per_audio:(`torch.FloatTensor` of shape `(audio_batch_size, text_batch_size)`):
The scaled dot product scores between `audio_embeds` and `text_embeds`. This represents the audio-text
similarity scores.
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, audio_batch_size)`):
The scaled dot product scores between `text_embeds` and `audio_embeds`. This represents the text-audio
similarity scores.
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`].
audio_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`].
text_model_output(`BaseModelOutputWithPooling`):
The output of the [`ClapTextModel`].
audio_model_output(`BaseModelOutputWithPooling`):
The output of the [`ClapAudioModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_audio: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
audio_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPooling = None
audio_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "audio_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
# Adapted from transformers.models.swin.modeling_swin.SwinDropPath
class ClapDropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is a slightly
refactored version of the `SwinDropPath` implementation.
"""
def __init__(self, drop_prob=None):
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states):
if self.drop_prob == 0.0 or not self.training:
return hidden_states
keep_prob = 1 - self.drop_prob
# work with diff dim tensors, not just 2D ConvNets
shape = (hidden_states.shape[0],) + (1,) * (hidden_states.ndim - 1)
random_tensor = keep_prob + torch.rand(shape, dtype=hidden_states.dtype, device=hidden_states.device)
random_tensor.floor_() # binarize
output = hidden_states.div(keep_prob) * random_tensor
return output
# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/feature_fusion.py#L133
class ClapAudioAFFBlock(nn.Module):
r"""
ATTENTIONAL FEATURE FUSION Block from CLAP, since in CLAP we are always in 2D mode, it is not needed to implement
the 1D version.
"""
def __init__(self, config: ClapAudioConfig):
super().__init__()
channels = config.patch_embeds_hidden_size
downsize_ratio = config.aff_block_r
inter_channels = int(channels // downsize_ratio)
self.local_att = nn.Sequential(
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
self.global_att = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
self.sigmoid = nn.Sigmoid()
def forward(self, hidden_states, residual):
attention_input = hidden_states + residual
fused_layer_output = self.local_att(attention_input) + self.global_att(attention_input)
fused_layer_output = self.sigmoid(fused_layer_output)
output = 2 * hidden_states * fused_layer_output + 2 * residual * (1 - fused_layer_output)
return output
class ClapAudioPatchEmbed(nn.Module):
"""
This module converts the hidden states reshaped as an image to patch embeddings ready to be passed to the
Transformer block.
"""
def __init__(self, config: ClapAudioConfig):
super().__init__()
img_size = (config.spec_size, config.spec_size) if isinstance(config.spec_size, int) else config.spec_size
patch_size = (
(config.patch_size, config.patch_size) if isinstance(config.patch_size, int) else config.patch_size
)
patch_stride = (
(config.patch_stride, config.patch_stride) if isinstance(config.patch_stride, int) else config.patch_stride
)
self.img_size = img_size
self.patch_stride = patch_stride
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = config.flatten_patch_embeds
self.enable_fusion = config.enable_fusion
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
scale_factor = 4 if (self.enable_fusion) and (config.fusion_type == "channel_map") else 1
self.proj = nn.Conv2d(
config.patch_embed_input_channels * scale_factor,
config.patch_embeds_hidden_size,
kernel_size=patch_size,
stride=patch_stride,
padding=padding,
)
self.norm = nn.LayerNorm(config.patch_embeds_hidden_size) if config.enable_patch_layer_norm else nn.Identity()
if self.enable_fusion:
self.fusion_model = ClapAudioAFFBlock(config)
self.mel_conv2d = nn.Conv2d(
config.patch_embed_input_channels,
config.patch_embeds_hidden_size,
kernel_size=(patch_size[0], patch_size[1] * 3),
stride=(patch_stride[0], patch_stride[1] * 3),
padding=padding,
)
def forward(self, hidden_states, is_longer_idx=None):
if self.enable_fusion:
# retrieve the last mel as we have transposed the input
global_hidden_states = hidden_states[:, 0:1, :, :]
# global processing
batch_size, num_channels, height, width = global_hidden_states.shape
if height != self.img_size[0] or width != self.img_size[1]:
raise ValueError(
f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
)
global_hidden_states = self.proj(global_hidden_states)
output_width = global_hidden_states.size(-1)
if len(is_longer_idx) > 0:
# local processing
local_hidden_states = hidden_states[is_longer_idx, 1:, :, :].contiguous()
batch_size, num_channels, height, width = local_hidden_states.shape
local_hidden_states = local_hidden_states.view(batch_size * num_channels, 1, height, width)
local_hidden_states = self.mel_conv2d(local_hidden_states)
_, features, height, width = local_hidden_states.shape
local_hidden_states = local_hidden_states.view(batch_size, num_channels, features, height, width)
local_hidden_states = local_hidden_states.permute((0, 2, 3, 1, 4)).contiguous().flatten(3)
local_width = local_hidden_states.size(-1)
local_hidden_states = torch.nn.functional.pad(
local_hidden_states, (0, output_width - local_width), "constant", 0
)
global_hidden_states[is_longer_idx] = self.fusion_model(
global_hidden_states[is_longer_idx], local_hidden_states
)
hidden_states = global_hidden_states
else:
_, _, height, width = hidden_states.shape
if height != self.img_size[0] or width != self.img_size[1]:
raise ValueError(
f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
)
hidden_states = self.proj(hidden_states)
if self.flatten:
hidden_states = hidden_states.flatten(2).transpose(1, 2)
hidden_states = self.norm(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->ClapAudio
class ClapAudioSelfAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.window_size = (
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
)
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
batch_size, dim, num_channels = hidden_states.shape
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
relative_position_bias = relative_position_bias.view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in ClapAudioModel forward() function)
mask_shape = attention_mask.shape[0]
attention_scores = attention_scores.view(
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim
)
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0)
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->ClapAudio
class ClapAudioSelfOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->ClapAudio
class ClapAudioAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
self.self = ClapAudioSelfAttention(config, dim, num_heads, window_size)
self.output = ClapAudioSelfOutput(config, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->ClapAudio
class ClapAudioIntermediate(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->ClapAudio
class ClapAudioOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinLayer with SwinDropPath->ClapDropPath, Swin->ClapAudio
class ClapAudioLayer(nn.Module):
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.shift_size = shift_size
self.window_size = config.window_size
self.input_resolution = input_resolution
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attention = ClapAudioAttention(config, dim, num_heads, window_size=self.window_size)
self.drop_path = ClapDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.intermediate = ClapAudioIntermediate(config, dim)
self.output = ClapAudioOutput(config, dim)
def set_shift_and_window_size(self, input_resolution):
if min(input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(input_resolution)
def get_attn_mask(self, height, width, dtype):
if self.shift_size > 0:
# calculate attention mask for SW-MSA
img_mask = torch.zeros((1, height, width, 1), dtype=dtype)
height_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
width_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
count = 0
for height_slice in height_slices:
for width_slice in width_slices:
img_mask[:, height_slice, width_slice, :] = count
count += 1
mask_windows = window_partition(img_mask, self.window_size)
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
return attn_mask
def maybe_pad(self, hidden_states, height, width):
pad_right = (self.window_size - width % self.window_size) % self.window_size
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
hidden_states = nn.functional.pad(hidden_states, pad_values)
return hidden_states, pad_values
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
if not always_partition:
self.set_shift_and_window_size(input_dimensions)
else:
pass
height, width = input_dimensions
batch_size, _, channels = hidden_states.size()
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states)
hidden_states = hidden_states.view(batch_size, height, width, channels)
# pad hidden_states to multiples of window size
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
_, height_pad, width_pad, _ = hidden_states.shape
# cyclic shift
if self.shift_size > 0:
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_hidden_states = hidden_states
# partition windows
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype)
if attn_mask is not None:
attn_mask = attn_mask.to(hidden_states_windows.device)
attention_outputs = self.attention(
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
)
attention_output = attention_outputs[0]
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)
# reverse cyclic shift
if self.shift_size > 0:
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
attention_windows = shifted_windows
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_windows = attention_windows[:, :height, :width, :].contiguous()
attention_windows = attention_windows.view(batch_size, height * width, channels)
hidden_states = shortcut + self.drop_path(attention_windows)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = hidden_states + self.output(layer_output)
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->ClapAudio
class ClapAudioStage(nn.Module):
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample):
super().__init__()
self.config = config
self.dim = dim
self.blocks = nn.ModuleList(
[
ClapAudioLayer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
shift_size=0 if (i % 2 == 0) else config.window_size // 2,
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
else:
self.downsample = None
self.pointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
height, width = input_dimensions
for i, layer_module in enumerate(self.blocks):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
output_dimensions = (height, width, height_downsampled, width_downsampled)
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging with Swin->ClapAudio
class ClapAudioPatchMerging(nn.Module):
"""
Patch Merging Layer.
Args:
input_resolution (`Tuple[int]`):
Resolution of input feature.
dim (`int`):
Number of input channels.
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
Normalization layer class.
"""
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def maybe_pad(self, input_feature, height, width):
should_pad = (height % 2 == 1) or (width % 2 == 1)
if should_pad:
pad_values = (0, 0, 0, width % 2, 0, height % 2)
input_feature = nn.functional.pad(input_feature, pad_values)
return input_feature
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
height, width = input_dimensions
# `dim` is height * width
batch_size, dim, num_channels = input_feature.shape
input_feature = input_feature.view(batch_size, height, width, num_channels)
# pad input to be disible by width and height, if needed
input_feature = self.maybe_pad(input_feature, height, width)
# [batch_size, height/2, width/2, num_channels]
input_feature_0 = input_feature[:, 0::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_1 = input_feature[:, 1::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_2 = input_feature[:, 0::2, 1::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_3 = input_feature[:, 1::2, 1::2, :]
# batch_size height/2 width/2 4*num_channels
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C
input_feature = self.norm(input_feature)
input_feature = self.reduction(input_feature)
return input_feature
class ClapAudioEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.num_layers = len(config.depths)
self.config = config
self.patch_embed = ClapAudioPatchEmbed(config)
self.enable_fusion = config.enable_fusion
self.patch_stride = self.patch_embed.patch_stride
self.spec_size = config.spec_size
self.freq_ratio = config.spec_size // config.num_mel_bins
self.num_features = int(config.patch_embeds_hidden_size * 2 ** (self.num_layers - 1))
drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
grid_size = self.patch_embed.grid_size
self.input_resolutions = [(grid_size[0] // (2**i), grid_size[1] // (2**i)) for i in range(self.num_layers)]
self.layers = nn.ModuleList(
[
ClapAudioStage(
config=config,
dim=int(config.patch_embeds_hidden_size * 2**i_layer),
input_resolution=self.input_resolutions[i_layer],
depth=config.depths[i_layer],
num_heads=config.num_attention_heads[i_layer],
drop_path=drop_path_rate[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=ClapAudioPatchMerging if (i_layer < self.num_layers - 1) else None,
)
for i_layer in range(self.num_layers)
]
)
self.gradient_checkpointing = False
self.batch_norm = nn.BatchNorm2d(config.num_mel_bins)
self.norm = nn.LayerNorm(self.num_features)
self.depths = config.depths
self.avgpool = nn.AdaptiveAvgPool1d(1)
def reshape_mel2img(self, normalized_input_features):
"""
The input is 4 normalized log mel spectrograms. It is reshape to the common shape of images. Each channel
should represent 1 of the 4 crops of the spectrogram. For more details, refer to the [`ClapFeatureExtractor`].
"""
_, _, time_length, freq_length = normalized_input_features.shape
spec_width = int(self.spec_size * self.freq_ratio)
spec_heigth = self.spec_size // self.freq_ratio
if time_length > spec_width or freq_length > spec_heigth:
raise ValueError("the wav size should be less than or equal to the swin input size")
# to avoid bicubic zero error
if time_length < spec_width:
normalized_input_features = nn.functional.interpolate(
normalized_input_features, (spec_width, freq_length), mode="bicubic", align_corners=True
)
if freq_length < spec_heigth:
normalized_input_features = nn.functional.interpolate(
normalized_input_features, (time_length, spec_heigth), mode="bicubic", align_corners=True
)
batch, channels, time, freq = normalized_input_features.shape
# batch_size, channels, spec_width, spec_heigth --> batch_size, channels, spec_heigth * freq_ratio, spec_width // freq_ratio
normalized_input_features = normalized_input_features.reshape(
batch, channels * self.freq_ratio, time // self.freq_ratio, freq
)
normalized_input_features = normalized_input_features.permute(0, 1, 3, 2).contiguous()
normalized_input_features = normalized_input_features.reshape(
batch, channels, freq * self.freq_ratio, time // self.freq_ratio
)
return normalized_input_features
def forward(
self,
input_features,
is_longer: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
always_partition: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, ClapAudioModelOutput]:
input_features = input_features.transpose(1, 3)
normalized_input_features = self.batch_norm(input_features)
normalized_input_features = normalized_input_features.transpose(1, 3)
is_longer_list_idx = None
if self.enable_fusion:
is_longer_list = is_longer.to(input_features.device)
is_longer_list_idx = torch.where(is_longer_list == 1)[0]
hidden_states = self.reshape_mel2img(normalized_input_features)
frames_num = hidden_states.shape[2]
hidden_states = self.patch_embed(hidden_states, is_longer_list_idx)
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
input_dimensions = self.input_resolutions[0]
if output_hidden_states:
batch_size, _, hidden_size = hidden_states.shape
# rearrange batch_size (height width) channels -> batch_size channel height width
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
input_dimensions = self.input_resolutions[i]
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module), hidden_states, input_dimensions, layer_head_mask
)
else:
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = layer_outputs[1]
output_dimensions = layer_outputs[2]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
if output_hidden_states and output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
# rearrange batch_size (height width) channels -> batch_size channel height width
# here we use the original (not downsampled) height and width
reshaped_hidden_state = hidden_states_before_downsampling.view(
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states.shape
# rearrange batch_size (height width) channels -> batch_size channel height width
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[3:]
last_hidden_state = self.norm(hidden_states)
batch_size, _, n_channels = last_hidden_state.shape
freq_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
temporal_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
last_hidden_state = (
last_hidden_state.permute(0, 2, 1).contiguous().reshape(batch_size, n_channels, freq_shape, temporal_shape)
)
batch_size, n_channels, n_frequencies, n_temp = last_hidden_state.shape
# group 2D CNN
c_freq_bin = n_frequencies // self.freq_ratio
last_hidden_state = last_hidden_state.reshape(
batch_size, n_channels, n_frequencies // c_freq_bin, c_freq_bin, n_temp
)
last_hidden_state = (
last_hidden_state.permute(0, 1, 3, 2, 4).contiguous().reshape(batch_size, n_channels, c_freq_bin, -1)
)
latent_output = self.avgpool(torch.flatten(last_hidden_state, 2))
latent_output = torch.flatten(latent_output, 1)
if not return_dict:
return tuple(
v
for v in [
last_hidden_state,
latent_output,
all_reshaped_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=latent_output,
hidden_states=all_reshaped_hidden_states,
attentions=all_self_attentions,
)
CLAP_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ClapConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CLAP_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CLAP_AUDIO_INPUTS_DOCSTRING = r"""
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also
retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details.
is_longer (`torch.FloatTensor`, of shape `(batch_size, 1)`, *optional*):
Whether the audio clip is longer than `max_length`. If `True`, a feature fusion will be enabled to enhance
the features.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CLAP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also
retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class ClapProjectionLayer(nn.Module):
def __init__(self, config: Union[ClapAudioConfig, ClapTextConfig]):
super().__init__()
self.config = config
hidden_size = config.hidden_size
projection_dim = config.projection_dim
self.linear1 = nn.Linear(hidden_size, projection_dim)
self.activation = ACT2FN[config.projection_hidden_act]
self.linear2 = nn.Linear(projection_dim, projection_dim)
def forward(self, hidden_states):
hidden_states = self.linear1(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.linear2(hidden_states)
return hidden_states
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->ClapText, persistent=False->persistent=True
class ClapTextEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=True
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=True
)
# End copy
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ClapText
class ClapTextSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in ClapTextModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class ClapTextSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ClapText
class ClapTextAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = ClapTextSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = ClapTextSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class ClapTextIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class ClapTextOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ClapText
class ClapTextLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ClapTextAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = ClapTextAttention(config, position_embedding_type="absolute")
self.intermediate = ClapTextIntermediate(config)
self.output = ClapTextOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ClapText
class ClapTextEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([ClapTextLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler
class ClapTextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class ClapPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ClapConfig
base_model_prefix = "clap"
supports_gradient_checkpointing = False
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, ClapTextEmbeddings):
module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.token_type_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, ClapModel):
nn.init.normal_(module.logit_scale_a, std=factor * 0.02)
nn.init.normal_(module.logit_scale_t, std=factor * 0.02)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, (nn.Conv2d, nn.Linear)):
in_proj_std = (self.config.hidden_size**-0.5) * ((2 * self.config.num_hidden_layers) ** -0.5) * factor
nn.init.normal_(module.weight, std=in_proj_std)
if module.bias is not None:
module.bias.data.zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, ClapTextEncoder):
module.gradient_checkpointing = value
class ClapAudioModel(ClapPreTrainedModel):
config_class = ClapAudioConfig
main_input_name = "input_features"
def __init__(self, config: ClapAudioConfig):
super().__init__(config)
self.audio_encoder = ClapAudioEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.audio_encoder.patch_embed.proj
@add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ClapAudioConfig)
def forward(
self,
input_features: Optional[torch.FloatTensor] = None,
is_longer: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from datasets import load_dataset
>>> from transformers import AutoProcessor, ClapAudioModel
>>> dataset = load_dataset("ashraq/esc50")
>>> audio_sample = dataset["train"]["audio"][0]["array"]
>>> model = ClapAudioModel.from_pretrained("laion/clap-htsat-fused")
>>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-fused")
>>> inputs = processor(audios=audio_sample, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return self.audio_encoder(
input_features=input_features,
is_longer=is_longer,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class ClapTextModel(ClapPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
"""
config_class = ClapTextConfig
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->ClapText
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = ClapTextEmbeddings(config)
self.encoder = ClapTextEncoder(config)
self.pooler = ClapTextPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(CLAP_START_DOCSTRING)
class ClapModel(ClapPreTrainedModel):
config_class = ClapConfig
def __init__(self, config: ClapConfig):
super().__init__(config)
if not isinstance(config.text_config, ClapTextConfig):
raise ValueError(
"config.text_config is expected to be of type ClapTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.audio_config, ClapAudioConfig):
raise ValueError(
"config.audio_config is expected to be of type ClapAudioConfig but is of type"
f" {type(config.audio_config)}."
)
text_config = config.text_config
audio_config = config.audio_config
self.logit_scale_a = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value)))
self.logit_scale_t = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value)))
self.projection_dim = config.projection_dim
self.text_model = ClapTextModel(text_config)
self.text_projection = ClapProjectionLayer(text_config)
self.audio_model = ClapAudioModel(audio_config)
self.audio_projection = ClapProjectionLayer(audio_config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`ClapTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, ClapModel
>>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused")
>>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
>>> inputs = tokenizer(["the sound of a cat", "the sound of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
# Use CLAP model's config for some fields (if specified) instead of those of audio & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1] if return_dict is not None else text_outputs.pooler_output
text_features = self.text_projection(pooled_output)
text_features = F.normalize(text_features, dim=-1)
return text_features
@add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING)
def get_audio_features(
self,
input_features: Optional[torch.Tensor] = None,
is_longer: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
audio_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by
applying the projection layer to the pooled output of [`ClapAudioModel`].
Examples:
```python
>>> from transformers import AutoFeatureExtractor, ClapModel
>>> import torch
>>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused")
>>> random_audio = torch.rand((16_000))
>>> inputs = feature_extractor(random_audio, return_tensors="pt")
>>> audio_features = model.get_audio_features(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
audio_outputs = self.audio_model(
input_features=input_features,
is_longer=is_longer,
return_dict=return_dict,
)
pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output
audio_features = self.audio_projection(pooled_output)
audio_features = F.normalize(audio_features, dim=-1)
return audio_features
@add_start_docstrings_to_model_forward(CLAP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ClapOutput, config_class=ClapConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
input_features: Optional[torch.FloatTensor] = None,
is_longer: Optional[torch.BoolTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ClapOutput]:
r"""
Returns:
Examples:
```python
>>> from datasets import load_dataset
>>> from transformers import AutoProcessor, ClapModel
>>> dataset = load_dataset("ashraq/esc50")
>>> audio_sample = dataset["train"]["audio"][0]["array"]
>>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused")
>>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-unfused")
>>> input_text = ["Sound of a dog", "Sound of vaccum cleaner"]
>>> inputs = processor(text=input_text, audios=audio_sample, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_audio = outputs.logits_per_audio # this is the audio-text similarity score
>>> probs = logits_per_audio.softmax(dim=-1) # we can take the softmax to get the label probabilities
```"""
# Use CLAP model's config for some fields (if specified) instead of those of audio & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
audio_outputs = self.audio_model(
input_features=input_features,
is_longer=is_longer,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
audio_embeds = audio_outputs[1] if not return_dict else audio_outputs.pooler_output
audio_embeds = self.audio_projection(audio_embeds)
text_embeds = text_outputs[1] if not return_dict else text_outputs.pooler_output
text_embeds = self.text_projection(text_embeds)
# normalized features
audio_embeds = audio_embeds / audio_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale_text = self.logit_scale_t.exp()
logit_scale_audio = self.logit_scale_a.exp()
logits_per_text = torch.matmul(text_embeds, audio_embeds.t()) * logit_scale_text
logits_per_audio = torch.matmul(audio_embeds, text_embeds.t()) * logit_scale_audio
loss = None
if return_loss:
caption_loss = contrastive_loss(logits_per_text)
audio_loss = contrastive_loss(logits_per_audio.t())
loss = (caption_loss + audio_loss) / 2.0
if not return_dict:
output = (logits_per_audio, logits_per_text, text_embeds, audio_embeds, text_outputs, audio_outputs)
return ((loss,) + output) if loss is not None else output
return ClapOutput(
loss=loss,
logits_per_audio=logits_per_audio,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
audio_embeds=audio_embeds,
text_model_output=text_outputs,
audio_model_output=audio_outputs,
)
@add_start_docstrings(
"""
CLAP Text Model with a projection layer on top (a linear layer on top of the pooled output).
""",
CLAP_START_DOCSTRING,
)
class ClapTextModelWithProjection(ClapPreTrainedModel):
config_class = ClapTextConfig
def __init__(self, config: ClapTextConfig):
super().__init__(config)
self.text_model = ClapTextModel(config)
self.text_projection = ClapProjectionLayer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.text_model.embeddings.word_embeddings = value
@add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ClapTextModelOutput, config_class=ClapTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ClapTextModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, ClapTextModelWithProjection
>>> model = ClapTextModelWithProjection.from_pretrained("laion/clap-htsat-unfused")
>>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
>>> inputs = tokenizer(["a sound of a cat", "a sound of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> text_embeds = outputs.text_embeds
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1] if not return_dict else text_outputs.pooler_output
text_embeds = self.text_projection(pooled_output)
if not return_dict:
outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
return tuple(output for output in outputs if output is not None)
return ClapTextModelOutput(
text_embeds=text_embeds,
last_hidden_state=text_outputs.last_hidden_state,
hidden_states=text_outputs.hidden_states,
attentions=text_outputs.attentions,
)
@add_start_docstrings(
"""
CLAP Audio Model with a projection layer on top (a linear layer on top of the pooled output).
""",
CLAP_START_DOCSTRING,
)
class ClapAudioModelWithProjection(ClapPreTrainedModel):
config_class = ClapAudioConfig
main_input_name = "input_features"
def __init__(self, config: ClapAudioConfig):
super().__init__(config)
self.audio_model = ClapAudioModel(config)
self.audio_projection = ClapProjectionLayer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.audio_model.audio_encoder.patch_embed.proj
@add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ClapAudioModelOutput, config_class=ClapAudioConfig)
def forward(
self,
input_features: Optional[torch.FloatTensor] = None,
is_longer: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ClapAudioModelOutput]:
r"""
Returns:
Examples:
```python
>>> from datasets import load_dataset
>>> from transformers import ClapAudioModelWithProjection, ClapProcessor
>>> model = ClapAudioModelWithProjection.from_pretrained("laion/clap-htsat-fused")
>>> processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused")
>>> dataset = load_dataset("ashraq/esc50")
>>> audio_sample = dataset["train"]["audio"][0]["array"]
>>> inputs = processor(audios=audio_sample, return_tensors="pt")
>>> outputs = model(**inputs)
>>> audio_embeds = outputs.audio_embeds
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
audio_outputs = self.audio_model(
input_features=input_features,
is_longer=is_longer,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output
audio_embeds = self.audio_projection(pooled_output)
if not return_dict:
outputs = (audio_embeds, audio_outputs[0]) + audio_outputs[2:]
return tuple(output for output in outputs if output is not None)
return ClapAudioModelOutput(
audio_embeds=audio_embeds,
last_hidden_state=audio_outputs.last_hidden_state,
attentions=audio_outputs.attentions,
hidden_states=audio_outputs.hidden_states,
)