|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Tokenization class for model ByT5.""" |
|
|
|
|
|
import warnings |
|
from typing import List, Optional, Tuple |
|
|
|
from ...tokenization_utils import AddedToken, PreTrainedTokenizer |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class ByT5Tokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a ByT5 tokenizer. ByT5 simply uses raw bytes utf-8 encoding. |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to |
|
this superclass for more information regarding those methods. |
|
|
|
Args: |
|
eos_token (`str`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
|
|
<Tip> |
|
|
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence. |
|
The token used is the `sep_token`. |
|
|
|
</Tip> |
|
|
|
unk_token (`str`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
pad_token (`str`, *optional*, defaults to `"<pad>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
extra_ids (`int`, *optional*, defaults to 125): |
|
Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are |
|
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are |
|
indexed from the end of the vocabulary up to beginning ("<extra_id_0>" is the last token in the vocabulary |
|
like in ByT5 preprocessing see |
|
[here](https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117)). |
|
additional_special_tokens (`List[str]`, *optional*): |
|
Additional special tokens used by the tokenizer. |
|
""" |
|
|
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
eos_token="</s>", |
|
unk_token="<unk>", |
|
pad_token="<pad>", |
|
extra_ids=125, |
|
additional_special_tokens=None, |
|
**kwargs, |
|
) -> None: |
|
|
|
if extra_ids > 0 and additional_special_tokens is None: |
|
additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)] |
|
elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0: |
|
|
|
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens))) |
|
if extra_tokens != extra_ids: |
|
raise ValueError( |
|
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" |
|
" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" |
|
" extra_ids tokens" |
|
) |
|
|
|
pad_token = AddedToken(pad_token, lstrip=True, rstrip=True) if isinstance(pad_token, str) else pad_token |
|
|
|
eos_token = AddedToken(eos_token, lstrip=True, rstrip=True) if isinstance(eos_token, str) else eos_token |
|
unk_token = AddedToken(unk_token, lstrip=True, rstrip=True) if isinstance(unk_token, str) else unk_token |
|
|
|
self._added_tokens_decoder = {0: pad_token, 1: eos_token, 2: unk_token} |
|
self.offset = len(self._added_tokens_decoder) |
|
self._utf_vocab_size = 2**8 |
|
super().__init__( |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
extra_ids=0, |
|
additional_special_tokens=additional_special_tokens, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def vocab_size(self): |
|
return self._utf_vocab_size |
|
|
|
def get_vocab(self): |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
|
|
if token_ids_1 is None: |
|
return ([0] * len(token_ids_0)) + [1] |
|
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] |
|
|
|
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: |
|
"""Do not add eos again if user already added it.""" |
|
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: |
|
warnings.warn( |
|
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" |
|
" eos tokens being added." |
|
) |
|
return token_ids |
|
else: |
|
return token_ids + [self.eos_token_id] |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. ByT5 does not |
|
make use of token type ids, therefore a list of zeros is returned. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of zeros. |
|
""" |
|
eos = [self.eos_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(token_ids_0 + eos) * [0] |
|
return len(token_ids_0 + eos + token_ids_1 + eos) * [0] |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A sequence has the following format: |
|
|
|
- single sequence: `X </s>` |
|
- pair of sequences: `A </s> B </s>` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
token_ids_0 = self._add_eos_if_not_present(token_ids_0) |
|
if token_ids_1 is None: |
|
return token_ids_0 |
|
else: |
|
token_ids_1 = self._add_eos_if_not_present(token_ids_1) |
|
return token_ids_0 + token_ids_1 |
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
"""Take as input a string and return a list of strings (tokens) for words/sub-words""" |
|
tokens = [chr(i) for i in text.encode("utf-8")] |
|
return tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
|
|
if len(token) != 1: |
|
token_id = None |
|
else: |
|
token_id = ord(token) + self.offset |
|
|
|
return token_id |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
token = chr(index - self.offset) |
|
return token |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
bstring = b"" |
|
for token in tokens: |
|
if token in self.added_tokens_decoder: |
|
tok_string = self.added_tokens_decoder[token].encode("utf-8") |
|
elif token in self.added_tokens_encoder: |
|
tok_string = token.encode("utf-8") |
|
else: |
|
tok_string = bytes([ord(token)]) |
|
bstring += tok_string |
|
string = bstring.decode("utf-8", errors="ignore") |
|
return string |
|
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
return () |
|
|