|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for BioGPT.""" |
|
import json |
|
import os |
|
from typing import List, Optional, Tuple |
|
|
|
from ...tokenization_utils import PreTrainedTokenizer |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = { |
|
"vocab_file": "vocab.json", |
|
"merges_file": "merges.txt", |
|
} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/vocab.json", |
|
}, |
|
"merges_file": {"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/merges.txt"}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"microsoft/biogpt": 1024, |
|
} |
|
|
|
|
|
def get_pairs(word): |
|
""" |
|
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length |
|
strings) |
|
""" |
|
pairs = set() |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
pairs.add((prev_char, char)) |
|
prev_char = char |
|
return pairs |
|
|
|
|
|
class BioGptTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct an FAIRSEQ Transformer tokenizer. Moses tokenization followed by Byte-Pair Encoding. |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to |
|
this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
merges_file (`str`): |
|
Merges file. |
|
unk_token (`str`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (`str`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
|
|
<Tip> |
|
|
|
When building a sequence using special tokens, this is not the token that is used for the beginning of |
|
sequence. The token used is the `cls_token`. |
|
|
|
</Tip> |
|
|
|
eos_token (`str`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
|
|
<Tip> |
|
|
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence. |
|
The token used is the `sep_token`. |
|
|
|
</Tip> |
|
|
|
sep_token (`str`, *optional*, defaults to `"</s>"`): |
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for |
|
sequence classification or for a text and a question for question answering. It is also used as the last |
|
token of a sequence built with special tokens. |
|
pad_token (`str`, *optional*, defaults to `"<pad>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
merges_file, |
|
unk_token="<unk>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
sep_token="</s>", |
|
pad_token="<pad>", |
|
**kwargs, |
|
): |
|
try: |
|
import sacremoses |
|
except ImportError: |
|
raise ImportError( |
|
"You need to install sacremoses to use BioGptTokenizer. " |
|
"See https://pypi.org/project/sacremoses/ for installation." |
|
) |
|
|
|
self.lang = "en" |
|
self.sm = sacremoses |
|
|
|
self.cache_moses_tokenizer = {} |
|
self.cache_moses_detokenizer = {} |
|
|
|
""" Initialisation""" |
|
with open(vocab_file, encoding="utf-8") as vocab_handle: |
|
self.encoder = json.load(vocab_handle) |
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
with open(merges_file, encoding="utf-8") as merges_handle: |
|
merges = merges_handle.read().split("\n")[:-1] |
|
merges = [tuple(merge.split()[:2]) for merge in merges] |
|
self.bpe_ranks = dict(zip(merges, range(len(merges)))) |
|
self.cache = {} |
|
|
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
sep_token=sep_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def vocab_size(self): |
|
"""Returns vocab size""" |
|
return len(self.encoder) |
|
|
|
def get_vocab(self): |
|
return dict(self.encoder, **self.added_tokens_encoder) |
|
|
|
def moses_tokenize(self, text, lang): |
|
if lang not in self.cache_moses_tokenizer: |
|
moses_tokenizer = self.sm.MosesTokenizer(lang=lang) |
|
self.cache_moses_tokenizer[lang] = moses_tokenizer |
|
return self.cache_moses_tokenizer[lang].tokenize( |
|
text, aggressive_dash_splits=True, return_str=False, escape=True |
|
) |
|
|
|
def moses_detokenize(self, tokens, lang): |
|
if lang not in self.cache_moses_detokenizer: |
|
moses_detokenizer = self.sm.MosesDetokenizer(lang=lang) |
|
self.cache_moses_detokenizer[lang] = moses_detokenizer |
|
return self.cache_moses_detokenizer[lang].detokenize(tokens) |
|
|
|
def bpe(self, token): |
|
word = tuple(token[:-1]) + (token[-1] + "</w>",) |
|
if token in self.cache: |
|
return self.cache[token] |
|
pairs = get_pairs(word) |
|
|
|
if not pairs: |
|
return token + "</w>" |
|
|
|
while True: |
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) |
|
if bigram not in self.bpe_ranks: |
|
break |
|
first, second = bigram |
|
new_word = [] |
|
i = 0 |
|
while i < len(word): |
|
try: |
|
j = word.index(first, i) |
|
except ValueError: |
|
new_word.extend(word[i:]) |
|
break |
|
else: |
|
new_word.extend(word[i:j]) |
|
i = j |
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: |
|
new_word.append(first + second) |
|
i += 2 |
|
else: |
|
new_word.append(word[i]) |
|
i += 1 |
|
new_word = tuple(new_word) |
|
word = new_word |
|
if len(word) == 1: |
|
break |
|
else: |
|
pairs = get_pairs(word) |
|
word = " ".join(word) |
|
if word == "\n </w>": |
|
word = "\n</w>" |
|
self.cache[token] = word |
|
return word |
|
|
|
def _tokenize(self, text, bypass_tokenizer=False): |
|
"""Returns a tokenized string.""" |
|
if bypass_tokenizer: |
|
text = text.split() |
|
else: |
|
text = self.moses_tokenize(text, self.lang) |
|
|
|
split_tokens = [] |
|
for token in text: |
|
if token: |
|
split_tokens.extend(list(self.bpe(token).split(" "))) |
|
|
|
return split_tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.encoder.get(token, self.encoder.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.decoder.get(index, self.unk_token) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
|
|
tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens] |
|
tokens = "".join(tokens).split() |
|
|
|
text = self.moses_detokenize(tokens, self.lang) |
|
return text |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BioGPT sequence has the following format: |
|
|
|
- single sequence: `</s> X ` |
|
- pair of sequences: `</s> A </s> B ` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
if token_ids_1 is None: |
|
return [self.sep_token_id] + token_ids_0 |
|
sep = [self.sep_token_id] |
|
return sep + token_ids_0 + sep + token_ids_1 |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
if token_ids_1 is not None: |
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) |
|
return [1] + ([0] * len(token_ids_0)) |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ |
|
Transformer sequence pair mask has the following format: |
|
|
|
``` |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
``` |
|
|
|
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). |
|
""" |
|
sep = [self.sep_token_id] |
|
|
|
|
|
if token_ids_1 is None: |
|
return len(token_ids_0 + sep) * [0] |
|
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
merge_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] |
|
) |
|
|
|
with open(vocab_file, "w", encoding="utf-8") as f: |
|
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") |
|
|
|
index = 0 |
|
with open(merge_file, "w", encoding="utf-8") as writer: |
|
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): |
|
if index != token_index: |
|
logger.warning( |
|
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." |
|
" Please check that the tokenizer is not corrupted!" |
|
) |
|
index = token_index |
|
writer.write(" ".join(bpe_tokens) + "\n") |
|
index += 1 |
|
|
|
return vocab_file, merge_file |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state["sm"] = None |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
|
|
try: |
|
import sacremoses |
|
except ImportError: |
|
raise ImportError( |
|
"You need to install sacremoses to use XLMTokenizer. " |
|
"See https://pypi.org/project/sacremoses/ for installation." |
|
) |
|
|
|
self.sm = sacremoses |
|
|