|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Tokenization classes for BERTweet""" |
|
|
|
|
|
import html |
|
import os |
|
import re |
|
from shutil import copyfile |
|
from typing import List, Optional, Tuple |
|
|
|
import regex |
|
|
|
from ...tokenization_utils import PreTrainedTokenizer |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = { |
|
"vocab_file": "vocab.txt", |
|
"merges_file": "bpe.codes", |
|
} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/vocab.txt", |
|
}, |
|
"merges_file": { |
|
"vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/bpe.codes", |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"vinai/bertweet-base": 128, |
|
} |
|
|
|
|
|
def get_pairs(word): |
|
""" |
|
Return set of symbol pairs in a word. |
|
|
|
Word is represented as tuple of symbols (symbols being variable-length strings). |
|
""" |
|
pairs = set() |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
pairs.add((prev_char, char)) |
|
prev_char = char |
|
|
|
pairs = set(pairs) |
|
return pairs |
|
|
|
|
|
class BertweetTokenizer(PreTrainedTokenizer): |
|
""" |
|
Constructs a BERTweet tokenizer, using Byte-Pair-Encoding. |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to |
|
this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
merges_file (`str`): |
|
Path to the merges file. |
|
normalization (`bool`, *optional*, defaults to `False`): |
|
Whether or not to apply a normalization preprocess. |
|
bos_token (`str`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
|
|
<Tip> |
|
|
|
When building a sequence using special tokens, this is not the token that is used for the beginning of |
|
sequence. The token used is the `cls_token`. |
|
|
|
</Tip> |
|
|
|
eos_token (`str`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
|
|
<Tip> |
|
|
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence. |
|
The token used is the `sep_token`. |
|
|
|
</Tip> |
|
|
|
sep_token (`str`, *optional*, defaults to `"</s>"`): |
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for |
|
sequence classification or for a text and a question for question answering. It is also used as the last |
|
token of a sequence built with special tokens. |
|
cls_token (`str`, *optional*, defaults to `"<s>"`): |
|
The classifier token which is used when doing sequence classification (classification of the whole sequence |
|
instead of per-token classification). It is the first token of the sequence when built with special tokens. |
|
unk_token (`str`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
pad_token (`str`, *optional*, defaults to `"<pad>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
mask_token (`str`, *optional*, defaults to `"<mask>"`): |
|
The token used for masking values. This is the token used when training this model with masked language |
|
modeling. This is the token which the model will try to predict. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
merges_file, |
|
normalization=False, |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
sep_token="</s>", |
|
cls_token="<s>", |
|
unk_token="<unk>", |
|
pad_token="<pad>", |
|
mask_token="<mask>", |
|
**kwargs, |
|
): |
|
try: |
|
from emoji import demojize |
|
|
|
self.demojizer = demojize |
|
except ImportError: |
|
logger.warning( |
|
"emoji is not installed, thus not converting emoticons or emojis into text. Install emoji: pip3" |
|
" install emoji==0.6.0" |
|
) |
|
self.demojizer = None |
|
|
|
self.vocab_file = vocab_file |
|
self.merges_file = merges_file |
|
|
|
self.encoder = {} |
|
self.encoder[bos_token] = 0 |
|
self.encoder[pad_token] = 1 |
|
self.encoder[eos_token] = 2 |
|
self.encoder[unk_token] = 3 |
|
|
|
self.add_from_file(vocab_file) |
|
|
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
|
|
with open(merges_file, encoding="utf-8") as merges_handle: |
|
merges = merges_handle.read().split("\n")[:-1] |
|
merges = [tuple(merge.split()[:-1]) for merge in merges] |
|
self.bpe_ranks = dict(zip(merges, range(len(merges)))) |
|
self.cache = {} |
|
|
|
self.normalization = normalization |
|
self.tweetPreprocessor = TweetTokenizer() |
|
self.special_puncts = {"’": "'", "…": "..."} |
|
|
|
super().__init__( |
|
normalization=normalization, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
sep_token=sep_token, |
|
cls_token=cls_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
mask_token=mask_token, |
|
**kwargs, |
|
) |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BERTweet sequence has the following format: |
|
|
|
- single sequence: `<s> X </s>` |
|
- pair of sequences: `<s> A </s></s> B </s>` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
|
|
if token_ids_1 is None: |
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
sep = [self.sep_token_id] |
|
return cls + token_ids_0 + sep + sep + token_ids_1 + sep |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
|
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
if token_ids_1 is None: |
|
return [1] + ([0] * len(token_ids_0)) + [1] |
|
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does |
|
not make use of token type ids, therefore a list of zeros is returned. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of zeros. |
|
""" |
|
|
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.encoder) |
|
|
|
def get_vocab(self): |
|
return dict(self.encoder, **self.added_tokens_encoder) |
|
|
|
def bpe(self, token): |
|
if token in self.cache: |
|
return self.cache[token] |
|
word = tuple(token) |
|
word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) |
|
pairs = get_pairs(word) |
|
|
|
if not pairs: |
|
return token |
|
|
|
while True: |
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) |
|
if bigram not in self.bpe_ranks: |
|
break |
|
first, second = bigram |
|
new_word = [] |
|
i = 0 |
|
while i < len(word): |
|
try: |
|
j = word.index(first, i) |
|
except ValueError: |
|
new_word.extend(word[i:]) |
|
break |
|
else: |
|
new_word.extend(word[i:j]) |
|
i = j |
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: |
|
new_word.append(first + second) |
|
i += 2 |
|
else: |
|
new_word.append(word[i]) |
|
i += 1 |
|
new_word = tuple(new_word) |
|
word = new_word |
|
if len(word) == 1: |
|
break |
|
else: |
|
pairs = get_pairs(word) |
|
word = "@@ ".join(word) |
|
word = word[:-4] |
|
self.cache[token] = word |
|
return word |
|
|
|
def _tokenize(self, text): |
|
"""Tokenize a string.""" |
|
if self.normalization: |
|
text = self.normalizeTweet(text) |
|
|
|
split_tokens = [] |
|
words = re.findall(r"\S+\n?", text) |
|
for token in words: |
|
split_tokens.extend(list(self.bpe(token).split(" "))) |
|
return split_tokens |
|
|
|
def normalizeTweet(self, tweet): |
|
""" |
|
Normalize a raw Tweet |
|
""" |
|
for punct in self.special_puncts: |
|
tweet = tweet.replace(punct, self.special_puncts[punct]) |
|
|
|
tokens = self.tweetPreprocessor.tokenize(tweet) |
|
normTweet = " ".join([self.normalizeToken(token) for token in tokens]) |
|
|
|
normTweet = ( |
|
normTweet.replace("cannot ", "can not ") |
|
.replace("n't ", " n't ") |
|
.replace("n 't ", " n't ") |
|
.replace("ca n't", "can't") |
|
.replace("ai n't", "ain't") |
|
) |
|
normTweet = ( |
|
normTweet.replace("'m ", " 'm ") |
|
.replace("'re ", " 're ") |
|
.replace("'s ", " 's ") |
|
.replace("'ll ", " 'll ") |
|
.replace("'d ", " 'd ") |
|
.replace("'ve ", " 've ") |
|
) |
|
normTweet = ( |
|
normTweet.replace(" p . m .", " p.m.") |
|
.replace(" p . m ", " p.m ") |
|
.replace(" a . m .", " a.m.") |
|
.replace(" a . m ", " a.m ") |
|
) |
|
|
|
return " ".join(normTweet.split()) |
|
|
|
def normalizeToken(self, token): |
|
""" |
|
Normalize tokens in a Tweet |
|
""" |
|
lowercased_token = token.lower() |
|
if token.startswith("@"): |
|
return "@USER" |
|
elif lowercased_token.startswith("http") or lowercased_token.startswith("www"): |
|
return "HTTPURL" |
|
elif len(token) == 1: |
|
if token in self.special_puncts: |
|
return self.special_puncts[token] |
|
if self.demojizer is not None: |
|
return self.demojizer(token) |
|
else: |
|
return token |
|
else: |
|
return token |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.encoder.get(token, self.encoder.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.decoder.get(index, self.unk_token) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
out_string = " ".join(tokens).replace("@@ ", "").strip() |
|
return out_string |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
out_merge_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, "wb") as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
|
|
if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file): |
|
copyfile(self.merges_file, out_merge_file) |
|
|
|
return out_vocab_file, out_merge_file |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_from_file(self, f): |
|
""" |
|
Loads a pre-existing dictionary from a text file and adds its symbols to this instance. |
|
""" |
|
if isinstance(f, str): |
|
try: |
|
with open(f, "r", encoding="utf-8") as fd: |
|
self.add_from_file(fd) |
|
except FileNotFoundError as fnfe: |
|
raise fnfe |
|
except UnicodeError: |
|
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") |
|
return |
|
|
|
lines = f.readlines() |
|
for lineTmp in lines: |
|
line = lineTmp.strip() |
|
idx = line.rfind(" ") |
|
if idx == -1: |
|
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") |
|
word = line[:idx] |
|
self.encoder[word] = len(self.encoder) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Twitter-aware tokenizer, designed to be flexible and easy to adapt to new domains and tasks. The basic logic is this: |
|
|
|
1. The tuple regex_strings defines a list of regular expression strings. |
|
|
|
2. The regex_strings strings are put, in order, into a compiled regular expression object called word_re. |
|
|
|
3. The tokenization is done by word_re.findall(s), where s is the user-supplied string, inside the tokenize() method of |
|
the class Tokenizer. |
|
|
|
4. When instantiating Tokenizer objects, there is a single option: preserve_case. By default, it is set to True. If it |
|
is set to False, then the tokenizer will lowercase everything except for emoticons. |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EMOTICONS = r""" |
|
(?: |
|
[<>]? |
|
[:;=8] # eyes |
|
[\-o\*\']? # optional nose |
|
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth |
|
| |
|
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth |
|
[\-o\*\']? # optional nose |
|
[:;=8] # eyes |
|
[<>]? |
|
| |
|
<3 # heart |
|
)""" |
|
|
|
|
|
|
|
|
|
URLS = r""" # Capture 1: entire matched URL |
|
(?: |
|
https?: # URL protocol and colon |
|
(?: |
|
/{1,3} # 1-3 slashes |
|
| # or |
|
[a-z0-9%] # Single letter or digit or '%' |
|
# (Trying not to match e.g. "URI::Escape") |
|
) |
|
| # or |
|
# looks like domain name followed by a slash: |
|
[a-z0-9.\-]+[.] |
|
(?:[a-z]{2,13}) |
|
/ |
|
) |
|
(?: # One or more: |
|
[^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[] |
|
| # or |
|
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) |
|
| |
|
\([^\s]+?\) # balanced parens, non-recursive: (...) |
|
)+ |
|
(?: # End with: |
|
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) |
|
| |
|
\([^\s]+?\) # balanced parens, non-recursive: (...) |
|
| # or |
|
[^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars |
|
) |
|
| # OR, the following to match naked domains: |
|
(?: |
|
(?<!@) # not preceded by a @, avoid matching foo@_gmail.com_ |
|
[a-z0-9]+ |
|
(?:[.\-][a-z0-9]+)* |
|
[.] |
|
(?:[a-z]{2,13}) |
|
\b |
|
/? |
|
(?!@) # not succeeded by a @, |
|
# avoid matching "foo.na" in "[email protected]" |
|
) |
|
""" |
|
|
|
|
|
|
|
REGEXPS = ( |
|
URLS, |
|
|
|
r""" |
|
(?: |
|
(?: # (international) |
|
\+?[01] |
|
[ *\-.\)]* |
|
)? |
|
(?: # (area code) |
|
[\(]? |
|
\d{3} |
|
[ *\-.\)]* |
|
)? |
|
\d{3} # exchange |
|
[ *\-.\)]* |
|
\d{4} # base |
|
)""", |
|
|
|
EMOTICONS, |
|
|
|
r"""<[^>\s]+>""", |
|
|
|
r"""[\-]+>|<[\-]+""", |
|
|
|
r"""(?:@[\w_]+)""", |
|
|
|
r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""", |
|
|
|
r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""", |
|
|
|
|
|
r""" |
|
(?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes. |
|
| |
|
(?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals. |
|
| |
|
(?:[\w_]+) # Words without apostrophes or dashes. |
|
| |
|
(?:\.(?:\s*\.){1,}) # Ellipsis dots. |
|
| |
|
(?:\S) # Everything else that isn't whitespace. |
|
""", |
|
) |
|
|
|
|
|
|
|
|
|
WORD_RE = regex.compile(r"""(%s)""" % "|".join(REGEXPS), regex.VERBOSE | regex.I | regex.UNICODE) |
|
|
|
|
|
HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}") |
|
|
|
|
|
|
|
EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE) |
|
|
|
|
|
ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _str_to_unicode(text, encoding=None, errors="strict"): |
|
if encoding is None: |
|
encoding = "utf-8" |
|
if isinstance(text, bytes): |
|
return text.decode(encoding, errors) |
|
return text |
|
|
|
|
|
def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"): |
|
""" |
|
Remove entities from text by converting them to their corresponding unicode character. |
|
|
|
Args: |
|
text: |
|
A unicode string or a byte string encoded in the given *encoding* (which defaults to 'utf-8'). |
|
keep (list): |
|
List of entity names which should not be replaced. This supports both numeric entities (`&#nnnn;` and |
|
`&#hhhh;`) and named entities (such as ` ` or `>`). |
|
remove_illegal (bool): |
|
If `True`, entities that can't be converted are removed. Otherwise, entities that can't be converted are |
|
kept "as is". |
|
|
|
Returns: A unicode string with the entities removed. |
|
|
|
See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from nltk.tokenize.casual import _replace_html_entities |
|
|
|
>>> _replace_html_entities(b"Price: £100") |
|
'Price: \\xa3100' |
|
|
|
>>> print(_replace_html_entities(b"Price: £100")) |
|
Price: £100 |
|
```""" |
|
|
|
def _convert_entity(match): |
|
entity_body = match.group(3) |
|
if match.group(1): |
|
try: |
|
if match.group(2): |
|
number = int(entity_body, 16) |
|
else: |
|
number = int(entity_body, 10) |
|
|
|
|
|
|
|
|
|
if 0x80 <= number <= 0x9F: |
|
return bytes((number,)).decode("cp1252") |
|
except ValueError: |
|
number = None |
|
else: |
|
if entity_body in keep: |
|
return match.group(0) |
|
else: |
|
number = html.entities.name2codepoint.get(entity_body) |
|
if number is not None: |
|
try: |
|
return chr(number) |
|
except (ValueError, OverflowError): |
|
pass |
|
|
|
return "" if remove_illegal else match.group(0) |
|
|
|
return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding)) |
|
|
|
|
|
|
|
|
|
|
|
class TweetTokenizer: |
|
r""" |
|
Examples: |
|
|
|
```python |
|
>>> # Tokenizer for tweets. |
|
>>> from nltk.tokenize import TweetTokenizer |
|
|
|
>>> tknzr = TweetTokenizer() |
|
>>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--" |
|
>>> tknzr.tokenize(s0) |
|
['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--'] |
|
|
|
>>> # Examples using *strip_handles* and *reduce_len parameters*: |
|
>>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True) |
|
>>> s1 = "@remy: This is waaaaayyyy too much for you!!!!!!" |
|
>>> tknzr.tokenize(s1) |
|
[':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!'] |
|
```""" |
|
|
|
def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False): |
|
self.preserve_case = preserve_case |
|
self.reduce_len = reduce_len |
|
self.strip_handles = strip_handles |
|
|
|
def tokenize(self, text): |
|
""" |
|
Args: |
|
text: str |
|
|
|
Returns: list(str) A tokenized list of strings; concatenating this list returns the original string if |
|
`preserve_case=False` |
|
""" |
|
|
|
text = _replace_html_entities(text) |
|
|
|
if self.strip_handles: |
|
text = remove_handles(text) |
|
|
|
if self.reduce_len: |
|
text = reduce_lengthening(text) |
|
|
|
safe_text = HANG_RE.sub(r"\1\1\1", text) |
|
|
|
words = WORD_RE.findall(safe_text) |
|
|
|
if not self.preserve_case: |
|
words = [x if EMOTICON_RE.search(x) else x.lower() for x in words] |
|
return words |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def reduce_lengthening(text): |
|
""" |
|
Replace repeated character sequences of length 3 or greater with sequences of length 3. |
|
""" |
|
pattern = regex.compile(r"(.)\1{2,}") |
|
return pattern.sub(r"\1\1\1", text) |
|
|
|
|
|
def remove_handles(text): |
|
""" |
|
Remove Twitter username handles from text. |
|
""" |
|
pattern = regex.compile( |
|
r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)" |
|
) |
|
|
|
return pattern.sub(" ", text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False): |
|
""" |
|
Convenience function for wrapping the tokenizer. |
|
""" |
|
return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize( |
|
text |
|
) |
|
|
|
|
|
|
|
|