babe24 / transformers_4_35_0 /models /beit /modeling_flax_beit.py
mart9992's picture
m
9231ab9
# coding=utf-8
# Copyright 2021 Microsoft Research and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Tuple
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPooling,
FlaxMaskedLMOutput,
FlaxSequenceClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward
from .configuration_beit import BeitConfig
@flax.struct.dataclass
class FlaxBeitModelOutputWithPooling(FlaxBaseModelOutputWithPooling):
"""
Class for outputs of [`FlaxBeitModel`].
Args:
last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
BEIT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
BEIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`AutoImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def relative_position_index_init(window_size: Tuple[int, int]) -> jnp.ndarray:
"""
get pair-wise relative position index for each token inside the window
"""
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
coords_h = np.arange(window_size[0])
coords_w = np.arange(window_size[1])
coords = np.stack(np.meshgrid(coords_h, coords_w, indexing="ij")) # 2, Wh, Ww
coords_flatten = np.reshape(coords, (2, -1))
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = np.transpose(relative_coords, (1, 2, 0)) # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = np.zeros(shape=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = num_relative_distance - 3
relative_position_index[0:, 0] = num_relative_distance - 2
relative_position_index[0, 0] = num_relative_distance - 1
return jnp.array(relative_position_index)
def ones_with_scale(key, shape, scale, dtype=jnp.float32):
return jnp.ones(shape, dtype) * scale
class FlaxBeitDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
rate: float
@nn.module.compact
def __call__(self, inputs, deterministic: Optional[bool] = True):
if self.rate == 0.0:
return inputs
keep_prob = 1.0 - self.rate
if deterministic:
return inputs
else:
shape = (inputs.shape[0],) + (1,) * (inputs.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
rng = self.make_rng("droppath")
random_tensor = keep_prob + jax.random.uniform(rng, shape=shape, dtype=inputs.dtype)
binary_tensor = jnp.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
class FlaxBeitPatchEmbeddings(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.num_channels = self.config.num_channels
image_size = self.config.image_size
patch_size = self.config.patch_size
num_patches = (image_size // patch_size) * (image_size // patch_size)
patch_shape = (image_size // patch_size, image_size // patch_size)
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv(
self.config.hidden_size,
kernel_size=(patch_size, patch_size),
strides=(patch_size, patch_size),
padding="VALID",
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
def __call__(self, pixel_values):
num_channels = pixel_values.shape[-1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
batch_size, _, _, channels = embeddings.shape
return jnp.reshape(embeddings, (batch_size, -1, channels))
class FlaxBeitEmbeddings(nn.Module):
"""Construct the CLS token, position and patch embeddings."""
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.cls_token = self.param("cls_token", nn.initializers.zeros, (1, 1, self.config.hidden_size))
if self.config.use_mask_token:
self.mask_token = self.param("mask_token", nn.initializers.zeros, (1, 1, self.config.hidden_size))
self.patch_embeddings = FlaxBeitPatchEmbeddings(self.config, dtype=self.dtype)
num_patches = self.patch_embeddings.num_patches
if self.config.use_absolute_position_embeddings:
self.position_embeddings = self.param(
"position_embeddings", nn.initializers.zeros, (1, num_patches + 1, self.config.hidden_size)
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, pixel_values, bool_masked_pos=None, deterministic=True):
embeddings = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.shape
cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size))
cls_tokens = cls_tokens.astype(embeddings.dtype)
if bool_masked_pos is not None:
mask_tokens = jnp.broadcast_to(self.mask_token, (batch_size, seq_len, self.config.hidden_size))
mask_tokens = mask_tokens.astype(embeddings.dtype)
# replace the masked visual tokens by mask_tokens
w = jnp.expand_dims(bool_masked_pos, axis=-1)
embeddings = embeddings * (1 - w) + mask_tokens * w
embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1)
if self.config.use_absolute_position_embeddings:
embeddings = embeddings + self.position_embeddings.astype(embeddings.dtype)
embeddings = self.dropout(embeddings, deterministic=deterministic)
return embeddings
class FlaxBeitRelativePositionBias(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
num_relative_distance = (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) + 3
self.relative_position_bias_table = self.param(
"relative_position_bias_table",
nn.initializers.zeros,
(num_relative_distance, self.config.num_attention_heads),
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
self.relative_position_index = relative_position_index_init(self.window_size)
def __call__(self):
index = self.relative_position_index.reshape(-1)
shape = (self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1)
relative_position_bias = self.relative_position_bias_table[index].reshape(shape) # Wh*Ww,Wh*Ww,nH
return jnp.transpose(relative_position_bias, (2, 0, 1))
class FlaxBeitSelfAttention(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.hidden_size % self.config.num_attention_heads != 0 and not hasattr(
self.config, "embedding_size"
):
raise ValueError(
f"The hidden size {self.config.hidden_size,} is not a multiple of the number of attention "
f"heads {self.config.num_attention_heads}."
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
use_bias=False,
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.relative_position_bias = (
FlaxBeitRelativePositionBias(self.config, window_size=self.window_size, dtype=self.dtype)
if self.window_size
else None
)
def __call__(
self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False
):
head_dim = self.config.hidden_size // self.config.num_attention_heads
query_states = self.query(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
value_states = self.value(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
key_states = self.key(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attention_bias = jnp.array(0.0, dtype=self.dtype)
# Add relative position bias if present.
if self.relative_position_bias is not None:
attention_bias = jnp.expand_dims(self.relative_position_bias(), 0)
attention_bias = attention_bias.astype(query_states.dtype)
# Add shared relative position bias if provided.
if relative_position_bias is not None:
attention_bias = attention_bias + relative_position_bias.astype(attention_bias.dtype)
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxBeitSelfOutput(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxBeitAttention(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32
def setup(self):
self.attention = FlaxBeitSelfAttention(self.config, self.window_size, dtype=self.dtype)
self.output = FlaxBeitSelfOutput(self.config, dtype=self.dtype)
def __call__(
self, hidden_states, relative_position_bias=None, deterministic=True, output_attentions: bool = False
):
attn_outputs = self.attention(
hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions
)
attn_output = attn_outputs[0]
attn_output = self.output(attn_output, deterministic=deterministic)
outputs = (attn_output,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
class FlaxBeitIntermediate(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class FlaxBeitOutput(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxBeitLayer(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
drop_path_rate: float
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxBeitAttention(self.config, self.window_size, dtype=self.dtype)
self.intermediate = FlaxBeitIntermediate(self.config, dtype=self.dtype)
self.output = FlaxBeitOutput(self.config, dtype=self.dtype)
self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.drop_path = FlaxBeitDropPath(rate=self.drop_path_rate)
self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.init_values = self.config.layer_scale_init_value
if self.init_values > 0:
self.lambda_1 = self.param("lambda_1", ones_with_scale, (self.config.hidden_size), self.init_values)
self.lambda_2 = self.param("lambda_2", ones_with_scale, (self.config.hidden_size), self.init_values)
else:
self.lambda_1 = None
self.lambda_2 = None
def __call__(
self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False
):
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
relative_position_bias,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
# apply lambda_1 if present
if self.lambda_1 is not None:
attention_output = self.lambda_1.astype(attention_output.dtype) * attention_output
# first residual connection
hidden_states = self.drop_path(attention_output, deterministic=deterministic) + hidden_states
# in BEiT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output, deterministic=deterministic)
# apply lambda_2 if present
if self.lambda_2 is not None:
layer_output = self.lambda_2.astype(layer_output.dtype) * layer_output
# second residual connection
layer_output = self.drop_path(layer_output, deterministic=deterministic) + hidden_states
outputs = (layer_output,)
if output_attentions:
outputs += (self_attention_outputs[1],)
return outputs
class FlaxBeitLayerCollection(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
drop_path_rates: List[float]
relative_position_bias: Callable[[], jnp.ndarray]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBeitLayer(
self.config,
window_size=self.window_size if self.config.use_relative_position_bias else None,
drop_path_rate=self.drop_path_rates[i],
name=str(i),
dtype=self.dtype,
)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
relative_position_bias = self.relative_position_bias() if self.relative_position_bias is not None else None
layer_outputs = layer(
hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states,)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class FlaxBeitEncoder(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.use_shared_relative_position_bias:
self.relative_position_bias = FlaxBeitRelativePositionBias(
config=self.config, window_size=self.window_size, dtype=self.dtype
)
# stochastic depth decay rule
drop_path_rates = list(np.linspace(0, self.config.drop_path_rate, self.config.num_hidden_layers))
self.layer = FlaxBeitLayerCollection(
self.config,
window_size=self.window_size,
drop_path_rates=drop_path_rates,
relative_position_bias=self.relative_position_bias
if self.config.use_shared_relative_position_bias
else None,
dtype=self.dtype,
)
def __call__(
self,
hidden_states,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxBeitPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BeitConfig
base_model_prefix = "beit"
main_input_name = "pixel_values"
module_class: nn.Module = None
def __init__(
self,
config: BeitConfig,
input_shape=None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
if input_shape is None:
input_shape = (1, config.image_size, config.image_size, config.num_channels)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
params_rng, dropout_rng = jax.random.split(rng)
dropout_rng, droppath_rng = jax.random.split(dropout_rng)
rngs = {"params": params_rng, "dropout": dropout_rng, "droppath": droppath_rng}
random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
pixel_values,
bool_masked_pos=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
dropout_rng, droppath_rng = jax.random.split(dropout_rng)
rngs["dropout"] = dropout_rng
rngs["droppath"] = droppath_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(pixel_values, dtype=jnp.float32),
bool_masked_pos,
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
class FlaxBeitPooler(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.use_mean_pooling:
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states):
if self.config.use_mean_pooling:
# Mean pool the final hidden states of the patch tokens
patch_tokens = hidden_states[:, 1:, :]
pooled_output = self.layernorm(jnp.mean(patch_tokens, axis=1))
else:
# Pool by simply taking the final hidden state of the [CLS] token
pooled_output = hidden_states[:, 0]
return pooled_output
class FlaxBeitModule(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
add_pooling_layer: bool = True
def setup(self):
self.embeddings = FlaxBeitEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxBeitEncoder(
self.config, window_size=self.embeddings.patch_embeddings.patch_shape, dtype=self.dtype
)
if not self.config.use_mean_pooling:
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.pooler = FlaxBeitPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None
def __call__(
self,
pixel_values,
bool_masked_pos=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
hidden_states = self.embeddings(pixel_values, bool_masked_pos, deterministic=deterministic)
outputs = self.encoder(
hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if not self.config.use_mean_pooling:
hidden_states = self.layernorm(hidden_states)
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
if not return_dict:
# if pooled is None, don't return it
if pooled is None:
return (hidden_states,) + outputs[1:]
return (hidden_states, pooled) + outputs[1:]
return FlaxBeitModelOutputWithPooling(
last_hidden_state=hidden_states,
pooler_output=pooled,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
BEIT_START_DOCSTRING,
)
class FlaxBeitModel(FlaxBeitPreTrainedModel):
module_class = FlaxBeitModule
FLAX_BEIT_MODEL_DOCSTRING = """
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, FlaxBeitModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> model = FlaxBeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
overwrite_call_docstring(FlaxBeitModel, FLAX_BEIT_MODEL_DOCSTRING)
append_replace_return_docstrings(FlaxBeitModel, output_type=FlaxBeitModelOutputWithPooling, config_class=BeitConfig)
class FlaxBeitForMaskedImageModelingModule(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.beit = FlaxBeitModule(self.config, add_pooling_layer=False, dtype=self.dtype)
# Classifier head
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
pixel_values=None,
bool_masked_pos=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
bool_masked_pos,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.layernorm(sequence_output)
prediction_scores = self.lm_head(sequence_output[:, 1:])
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return output
return FlaxMaskedLMOutput(
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).",
BEIT_START_DOCSTRING,
)
class FlaxBeitForMaskedImageModeling(FlaxBeitPreTrainedModel):
module_class = FlaxBeitForMaskedImageModelingModule
FLAX_BEIT_MLM_DOCSTRING = """
bool_masked_pos (`numpy.ndarray` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
```
"""
overwrite_call_docstring(FlaxBeitForMaskedImageModeling, FLAX_BEIT_MLM_DOCSTRING)
append_replace_return_docstrings(
FlaxBeitForMaskedImageModeling, output_type=FlaxMaskedLMOutput, config_class=BeitConfig
)
class FlaxBeitForImageClassificationModule(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.beit = FlaxBeitModule(config=self.config, dtype=self.dtype, add_pooling_layer=True)
self.classifier = nn.Dense(
self.config.num_labels,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
pixel_values=None,
bool_masked_pos=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
if not return_dict:
output = (logits,) + outputs[2:]
return output
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
hidden states of the patch tokens) e.g. for ImageNet.
""",
BEIT_START_DOCSTRING,
)
class FlaxBeitForImageClassification(FlaxBeitPreTrainedModel):
module_class = FlaxBeitForImageClassificationModule
FLAX_BEIT_CLASSIF_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoImageProcessor, FlaxBeitForImageClassification
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
>>> model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
```
"""
overwrite_call_docstring(FlaxBeitForImageClassification, FLAX_BEIT_CLASSIF_DOCSTRING)
append_replace_return_docstrings(
FlaxBeitForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=BeitConfig
)