|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for Bark |
|
""" |
|
import json |
|
import os |
|
from typing import Optional |
|
|
|
import numpy as np |
|
|
|
from ...feature_extraction_utils import BatchFeature |
|
from ...processing_utils import ProcessorMixin |
|
from ...utils import logging |
|
from ...utils.hub import get_file_from_repo |
|
from ..auto import AutoTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class BarkProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor. |
|
|
|
Args: |
|
tokenizer ([`PreTrainedTokenizer`]): |
|
An instance of [`PreTrainedTokenizer`]. |
|
speaker_embeddings (`Dict[Dict[str]]`, *optional*): |
|
Optional nested speaker embeddings dictionary. The first level contains voice preset names (e.g |
|
`"en_speaker_4"`). The second level contains `"semantic_prompt"`, `"coarse_prompt"` and `"fine_prompt"` |
|
embeddings. The values correspond to the path of the corresponding `np.ndarray`. See |
|
[here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c) for |
|
a list of `voice_preset_names`. |
|
|
|
""" |
|
tokenizer_class = "AutoTokenizer" |
|
attributes = ["tokenizer"] |
|
|
|
preset_shape = { |
|
"semantic_prompt": 1, |
|
"coarse_prompt": 2, |
|
"fine_prompt": 2, |
|
} |
|
|
|
def __init__(self, tokenizer, speaker_embeddings=None): |
|
super().__init__(tokenizer) |
|
|
|
self.speaker_embeddings = speaker_embeddings |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_processor_name_or_path, speaker_embeddings_dict_path="speaker_embeddings_path.json", **kwargs |
|
): |
|
r""" |
|
Instantiate a Bark processor associated with a pretrained model. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a pretrained [`BarkProcessor`] hosted inside a model repo on |
|
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or |
|
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- a path to a *directory* containing a processor saved using the [`~BarkProcessor.save_pretrained`] |
|
method, e.g., `./my_model_directory/`. |
|
speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`): |
|
The name of the `.json` file containing the speaker_embeddings dictionnary located in |
|
`pretrained_model_name_or_path`. If `None`, no speaker_embeddings is loaded. |
|
**kwargs |
|
Additional keyword arguments passed along to both |
|
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`]. |
|
""" |
|
|
|
if speaker_embeddings_dict_path is not None: |
|
speaker_embeddings_path = get_file_from_repo( |
|
pretrained_processor_name_or_path, |
|
speaker_embeddings_dict_path, |
|
subfolder=kwargs.pop("subfolder", None), |
|
cache_dir=kwargs.pop("cache_dir", None), |
|
force_download=kwargs.pop("force_download", False), |
|
proxies=kwargs.pop("proxies", None), |
|
resume_download=kwargs.pop("resume_download", False), |
|
local_files_only=kwargs.pop("local_files_only", False), |
|
use_auth_token=kwargs.pop("use_auth_token", None), |
|
revision=kwargs.pop("revision", None), |
|
) |
|
if speaker_embeddings_path is None: |
|
logger.warning( |
|
f"""`{os.path.join(pretrained_processor_name_or_path,speaker_embeddings_dict_path)}` does not exists |
|
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json |
|
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" |
|
) |
|
speaker_embeddings = None |
|
else: |
|
with open(speaker_embeddings_path) as speaker_embeddings_json: |
|
speaker_embeddings = json.load(speaker_embeddings_json) |
|
else: |
|
speaker_embeddings = None |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_processor_name_or_path, **kwargs) |
|
|
|
return cls(tokenizer=tokenizer, speaker_embeddings=speaker_embeddings) |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory, |
|
speaker_embeddings_dict_path="speaker_embeddings_path.json", |
|
speaker_embeddings_directory="speaker_embeddings", |
|
push_to_hub: bool = False, |
|
**kwargs, |
|
): |
|
""" |
|
Saves the attributes of this processor (tokenizer...) in the specified directory so that it can be reloaded |
|
using the [`~BarkProcessor.from_pretrained`] method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the tokenizer files and the speaker embeddings will be saved (directory will be created |
|
if it does not exist). |
|
speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`): |
|
The name of the `.json` file that will contains the speaker_embeddings nested path dictionnary, if it |
|
exists, and that will be located in `pretrained_model_name_or_path/speaker_embeddings_directory`. |
|
speaker_embeddings_directory (`str`, *optional*, defaults to `"speaker_embeddings/"`): |
|
The name of the folder in which the speaker_embeddings arrays will be saved. |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the |
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your |
|
namespace). |
|
kwargs: |
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
""" |
|
if self.speaker_embeddings is not None: |
|
os.makedirs(os.path.join(save_directory, speaker_embeddings_directory, "v2"), exist_ok=True) |
|
|
|
embeddings_dict = {} |
|
|
|
embeddings_dict["repo_or_path"] = save_directory |
|
|
|
for prompt_key in self.speaker_embeddings: |
|
if prompt_key != "repo_or_path": |
|
voice_preset = self._load_voice_preset(prompt_key) |
|
|
|
tmp_dict = {} |
|
for key in self.speaker_embeddings[prompt_key]: |
|
np.save( |
|
os.path.join( |
|
embeddings_dict["repo_or_path"], speaker_embeddings_directory, f"{prompt_key}_{key}" |
|
), |
|
voice_preset[key], |
|
allow_pickle=False, |
|
) |
|
tmp_dict[key] = os.path.join(speaker_embeddings_directory, f"{prompt_key}_{key}.npy") |
|
|
|
embeddings_dict[prompt_key] = tmp_dict |
|
|
|
with open(os.path.join(save_directory, speaker_embeddings_dict_path), "w") as fp: |
|
json.dump(embeddings_dict, fp) |
|
|
|
super().save_pretrained(save_directory, push_to_hub, **kwargs) |
|
|
|
def _load_voice_preset(self, voice_preset: str = None, **kwargs): |
|
voice_preset_paths = self.speaker_embeddings[voice_preset] |
|
|
|
voice_preset_dict = {} |
|
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: |
|
if key not in voice_preset_paths: |
|
raise ValueError( |
|
f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." |
|
) |
|
|
|
path = get_file_from_repo( |
|
self.speaker_embeddings.get("repo_or_path", "/"), |
|
voice_preset_paths[key], |
|
subfolder=kwargs.pop("subfolder", None), |
|
cache_dir=kwargs.pop("cache_dir", None), |
|
force_download=kwargs.pop("force_download", False), |
|
proxies=kwargs.pop("proxies", None), |
|
resume_download=kwargs.pop("resume_download", False), |
|
local_files_only=kwargs.pop("local_files_only", False), |
|
use_auth_token=kwargs.pop("use_auth_token", None), |
|
revision=kwargs.pop("revision", None), |
|
) |
|
if path is None: |
|
raise ValueError( |
|
f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/"),voice_preset_paths[key])}` does not exists |
|
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} |
|
embeddings.""" |
|
) |
|
|
|
voice_preset_dict[key] = np.load(path) |
|
|
|
return voice_preset_dict |
|
|
|
def _validate_voice_preset_dict(self, voice_preset: Optional[dict] = None): |
|
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: |
|
if key not in voice_preset: |
|
raise ValueError(f"Voice preset unrecognized, missing {key} as a key.") |
|
|
|
if not isinstance(voice_preset[key], np.ndarray): |
|
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.") |
|
|
|
if len(voice_preset[key].shape) != self.preset_shape[key]: |
|
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.") |
|
|
|
def __call__( |
|
self, |
|
text=None, |
|
voice_preset=None, |
|
return_tensors="pt", |
|
max_length=256, |
|
add_special_tokens=False, |
|
return_attention_mask=True, |
|
return_token_type_ids=False, |
|
**kwargs, |
|
): |
|
""" |
|
Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs` |
|
arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a |
|
voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded |
|
to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename. |
|
|
|
Args: |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
voice_preset (`str`, `Dict[np.ndarray]`): |
|
The voice preset, i.e the speaker embeddings. It can either be a valid voice_preset name, e.g |
|
`"en_speaker_1"`, or directly a dictionnary of `np.ndarray` embeddings for each submodel of `Bark`. Or |
|
it can be a valid file name of a local `.npz` single voice preset. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
|
|
Returns: |
|
Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the |
|
`tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type. |
|
""" |
|
if voice_preset is not None and not isinstance(voice_preset, dict): |
|
if ( |
|
isinstance(voice_preset, str) |
|
and self.speaker_embeddings is not None |
|
and voice_preset in self.speaker_embeddings |
|
): |
|
voice_preset = self._load_voice_preset(voice_preset) |
|
|
|
else: |
|
if isinstance(voice_preset, str) and not voice_preset.endswith(".npz"): |
|
voice_preset = voice_preset + ".npz" |
|
|
|
voice_preset = np.load(voice_preset) |
|
|
|
if voice_preset is not None: |
|
self._validate_voice_preset_dict(voice_preset, **kwargs) |
|
voice_preset = BatchFeature(data=voice_preset, tensor_type=return_tensors) |
|
|
|
encoded_text = self.tokenizer( |
|
text, |
|
return_tensors=return_tensors, |
|
padding="max_length", |
|
max_length=max_length, |
|
return_attention_mask=return_attention_mask, |
|
return_token_type_ids=return_token_type_ids, |
|
add_special_tokens=add_special_tokens, |
|
**kwargs, |
|
) |
|
|
|
if voice_preset is not None: |
|
encoded_text["history_prompt"] = voice_preset |
|
|
|
return encoded_text |
|
|