babe24 / transformers_4_35_0 /models /bark /configuration_bark.py
mart9992's picture
m
9231ab9
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BARK model configuration"""
import os
from typing import Dict, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings, logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
BARK_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"suno/bark-small": "https://huggingface.co/suno/bark-small/resolve/main/config.json",
"suno/bark": "https://huggingface.co/suno/bark/resolve/main/config.json",
}
BARK_SUBMODELCONFIG_START_DOCSTRING = """
This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
block_size (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
input_vocab_size (`int`, *optional*, defaults to 10_048):
Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with
regards to the chosen sub-model.
output_vocab_size (`int`, *optional*, defaults to 10_048):
Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented
by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought
with regards to the chosen sub-model.
num_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the given sub-model.
num_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer architecture.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
bias (`bool`, *optional*, defaults to `True`):
Whether or not to use bias in the linear layers and layer norm layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
class BarkSubModelConfig(PretrainedConfig):
model_type = "bark_module"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
"vocab_size": "input_vocab_size",
"window_size": "block_size",
}
def __init__(
self,
block_size=1024,
input_vocab_size=10_048,
output_vocab_size=10_048,
num_layers=12,
num_heads=12,
hidden_size=768,
dropout=0.0,
bias=True, # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
initializer_range=0.02,
use_cache=True,
**kwargs,
):
self.block_size = block_size
self.input_vocab_size = input_vocab_size
self.output_vocab_size = output_vocab_size
self.num_layers = num_layers
self.num_heads = num_heads
self.hidden_size = hidden_size
self.dropout = dropout
self.bias = bias
self.use_cache = use_cache
self.initializer_range = initializer_range
super().__init__(**kwargs)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
**kwargs,
) -> "PretrainedConfig":
kwargs["cache_dir"] = cache_dir
kwargs["force_download"] = force_download
kwargs["local_files_only"] = local_files_only
kwargs["revision"] = revision
cls._set_token_in_kwargs(kwargs, token)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the config dict if we are loading from Bark
if config_dict.get("model_type") == "bark":
config_dict = config_dict[f"{cls.model_type}_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
@add_start_docstrings(
BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkSemanticConfig", model="BarkSemanticModel"),
"""
Example:
```python
>>> from transformers import BarkSemanticConfig, BarkSemanticModel
>>> # Initializing a Bark sub-module style configuration
>>> configuration = BarkSemanticConfig()
>>> # Initializing a model (with random weights) from the suno/bark style configuration
>>> model = BarkSemanticModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```""",
)
class BarkSemanticConfig(BarkSubModelConfig):
model_type = "semantic"
@add_start_docstrings(
BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkCoarseConfig", model="BarkCoarseModel"),
"""
Example:
```python
>>> from transformers import BarkCoarseConfig, BarkCoarseModel
>>> # Initializing a Bark sub-module style configuration
>>> configuration = BarkCoarseConfig()
>>> # Initializing a model (with random weights) from the suno/bark style configuration
>>> model = BarkCoarseModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```""",
)
class BarkCoarseConfig(BarkSubModelConfig):
model_type = "coarse_acoustics"
@add_start_docstrings(
BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkFineConfig", model="BarkFineModel"),
"""
n_codes_total (`int`, *optional*, defaults to 8):
The total number of audio codebooks predicted. Used in the fine acoustics sub-model.
n_codes_given (`int`, *optional*, defaults to 1):
The number of audio codebooks predicted in the coarse acoustics sub-model. Used in the acoustics
sub-models.
Example:
```python
>>> from transformers import BarkFineConfig, BarkFineModel
>>> # Initializing a Bark sub-module style configuration
>>> configuration = BarkFineConfig()
>>> # Initializing a model (with random weights) from the suno/bark style configuration
>>> model = BarkFineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```""",
)
class BarkFineConfig(BarkSubModelConfig):
model_type = "fine_acoustics"
def __init__(self, tie_word_embeddings=True, n_codes_total=8, n_codes_given=1, **kwargs):
self.n_codes_total = n_codes_total
self.n_codes_given = n_codes_given
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class BarkConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark
model according to the specified sub-models configurations, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark
[suno/bark](https://huggingface.co/suno/bark) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
semantic_config ([`BarkSemanticConfig`], *optional*):
Configuration of the underlying semantic sub-model.
coarse_acoustics_config ([`BarkCoarseConfig`], *optional*):
Configuration of the underlying coarse acoustics sub-model.
fine_acoustics_config ([`BarkFineConfig`], *optional*):
Configuration of the underlying fine acoustics sub-model.
codec_config ([`AutoConfig`], *optional*):
Configuration of the underlying codec sub-model.
Example:
```python
>>> from transformers import (
... BarkSemanticConfig,
... BarkCoarseConfig,
... BarkFineConfig,
... BarkModel,
... BarkConfig,
... AutoConfig,
... )
>>> # Initializing Bark sub-modules configurations.
>>> semantic_config = BarkSemanticConfig()
>>> coarse_acoustics_config = BarkCoarseConfig()
>>> fine_acoustics_config = BarkFineConfig()
>>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz")
>>> # Initializing a Bark module style configuration
>>> configuration = BarkConfig.from_sub_model_configs(
... semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config
... )
>>> # Initializing a model (with random weights)
>>> model = BarkModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "bark"
def __init__(
self,
semantic_config: Dict = None,
coarse_acoustics_config: Dict = None,
fine_acoustics_config: Dict = None,
codec_config: Dict = None,
initializer_range=0.02,
**kwargs,
):
if semantic_config is None:
semantic_config = {}
logger.info("semantic_config is None. initializing the semantic model with default values.")
if coarse_acoustics_config is None:
coarse_acoustics_config = {}
logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.")
if fine_acoustics_config is None:
fine_acoustics_config = {}
logger.info("fine_acoustics_config is None. initializing the fine model with default values.")
if codec_config is None:
codec_config = {}
logger.info("codec_config is None. initializing the codec model with default values.")
self.semantic_config = BarkSemanticConfig(**semantic_config)
self.coarse_acoustics_config = BarkCoarseConfig(**coarse_acoustics_config)
self.fine_acoustics_config = BarkFineConfig(**fine_acoustics_config)
codec_model_type = codec_config["model_type"] if "model_type" in codec_config else "encodec"
self.codec_config = CONFIG_MAPPING[codec_model_type](**codec_config)
self.initializer_range = initializer_range
super().__init__(**kwargs)
@classmethod
def from_sub_model_configs(
cls,
semantic_config: BarkSemanticConfig,
coarse_acoustics_config: BarkCoarseConfig,
fine_acoustics_config: BarkFineConfig,
codec_config: PretrainedConfig,
**kwargs,
):
r"""
Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration.
Returns:
[`BarkConfig`]: An instance of a configuration object
"""
return cls(
semantic_config=semantic_config.to_dict(),
coarse_acoustics_config=coarse_acoustics_config.to_dict(),
fine_acoustics_config=fine_acoustics_config.to_dict(),
codec_config=codec_config.to_dict(),
**kwargs,
)