|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" BARK model configuration""" |
|
|
|
import os |
|
from typing import Dict, Optional, Union |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...utils import add_start_docstrings, logging |
|
from ..auto import CONFIG_MAPPING |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
BARK_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"suno/bark-small": "https://huggingface.co/suno/bark-small/resolve/main/config.json", |
|
"suno/bark": "https://huggingface.co/suno/bark/resolve/main/config.json", |
|
} |
|
|
|
BARK_SUBMODELCONFIG_START_DOCSTRING = """ |
|
This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark) |
|
architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
block_size (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
input_vocab_size (`int`, *optional*, defaults to 10_048): |
|
Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with |
|
regards to the chosen sub-model. |
|
output_vocab_size (`int`, *optional*, defaults to 10_048): |
|
Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented |
|
by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought |
|
with regards to the chosen sub-model. |
|
num_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the given sub-model. |
|
num_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer architecture. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture. |
|
dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
bias (`bool`, *optional*, defaults to `True`): |
|
Whether or not to use bias in the linear layers and layer norm layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
""" |
|
|
|
|
|
class BarkSubModelConfig(PretrainedConfig): |
|
model_type = "bark_module" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
attribute_map = { |
|
"num_attention_heads": "num_heads", |
|
"num_hidden_layers": "num_layers", |
|
"vocab_size": "input_vocab_size", |
|
"window_size": "block_size", |
|
} |
|
|
|
def __init__( |
|
self, |
|
block_size=1024, |
|
input_vocab_size=10_048, |
|
output_vocab_size=10_048, |
|
num_layers=12, |
|
num_heads=12, |
|
hidden_size=768, |
|
dropout=0.0, |
|
bias=True, |
|
initializer_range=0.02, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
self.block_size = block_size |
|
self.input_vocab_size = input_vocab_size |
|
self.output_vocab_size = output_vocab_size |
|
self.num_layers = num_layers |
|
self.num_heads = num_heads |
|
self.hidden_size = hidden_size |
|
self.dropout = dropout |
|
self.bias = bias |
|
self.use_cache = use_cache |
|
self.initializer_range = initializer_range |
|
|
|
super().__init__(**kwargs) |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
**kwargs, |
|
) -> "PretrainedConfig": |
|
kwargs["cache_dir"] = cache_dir |
|
kwargs["force_download"] = force_download |
|
kwargs["local_files_only"] = local_files_only |
|
kwargs["revision"] = revision |
|
|
|
cls._set_token_in_kwargs(kwargs, token) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "bark": |
|
config_dict = config_dict[f"{cls.model_type}_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
@add_start_docstrings( |
|
BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkSemanticConfig", model="BarkSemanticModel"), |
|
""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import BarkSemanticConfig, BarkSemanticModel |
|
|
|
>>> # Initializing a Bark sub-module style configuration |
|
>>> configuration = BarkSemanticConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the suno/bark style configuration |
|
>>> model = BarkSemanticModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""", |
|
) |
|
class BarkSemanticConfig(BarkSubModelConfig): |
|
model_type = "semantic" |
|
|
|
|
|
@add_start_docstrings( |
|
BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkCoarseConfig", model="BarkCoarseModel"), |
|
""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import BarkCoarseConfig, BarkCoarseModel |
|
|
|
>>> # Initializing a Bark sub-module style configuration |
|
>>> configuration = BarkCoarseConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the suno/bark style configuration |
|
>>> model = BarkCoarseModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""", |
|
) |
|
class BarkCoarseConfig(BarkSubModelConfig): |
|
model_type = "coarse_acoustics" |
|
|
|
|
|
@add_start_docstrings( |
|
BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkFineConfig", model="BarkFineModel"), |
|
""" |
|
n_codes_total (`int`, *optional*, defaults to 8): |
|
The total number of audio codebooks predicted. Used in the fine acoustics sub-model. |
|
n_codes_given (`int`, *optional*, defaults to 1): |
|
The number of audio codebooks predicted in the coarse acoustics sub-model. Used in the acoustics |
|
sub-models. |
|
Example: |
|
|
|
```python |
|
>>> from transformers import BarkFineConfig, BarkFineModel |
|
|
|
>>> # Initializing a Bark sub-module style configuration |
|
>>> configuration = BarkFineConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the suno/bark style configuration |
|
>>> model = BarkFineModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""", |
|
) |
|
class BarkFineConfig(BarkSubModelConfig): |
|
model_type = "fine_acoustics" |
|
|
|
def __init__(self, tie_word_embeddings=True, n_codes_total=8, n_codes_given=1, **kwargs): |
|
self.n_codes_total = n_codes_total |
|
self.n_codes_given = n_codes_given |
|
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|
|
|
|
class BarkConfig(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark |
|
model according to the specified sub-models configurations, defining the model architecture. |
|
|
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark |
|
[suno/bark](https://huggingface.co/suno/bark) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
semantic_config ([`BarkSemanticConfig`], *optional*): |
|
Configuration of the underlying semantic sub-model. |
|
coarse_acoustics_config ([`BarkCoarseConfig`], *optional*): |
|
Configuration of the underlying coarse acoustics sub-model. |
|
fine_acoustics_config ([`BarkFineConfig`], *optional*): |
|
Configuration of the underlying fine acoustics sub-model. |
|
codec_config ([`AutoConfig`], *optional*): |
|
Configuration of the underlying codec sub-model. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import ( |
|
... BarkSemanticConfig, |
|
... BarkCoarseConfig, |
|
... BarkFineConfig, |
|
... BarkModel, |
|
... BarkConfig, |
|
... AutoConfig, |
|
... ) |
|
|
|
>>> # Initializing Bark sub-modules configurations. |
|
>>> semantic_config = BarkSemanticConfig() |
|
>>> coarse_acoustics_config = BarkCoarseConfig() |
|
>>> fine_acoustics_config = BarkFineConfig() |
|
>>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz") |
|
|
|
|
|
>>> # Initializing a Bark module style configuration |
|
>>> configuration = BarkConfig.from_sub_model_configs( |
|
... semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config |
|
... ) |
|
|
|
>>> # Initializing a model (with random weights) |
|
>>> model = BarkModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
``` |
|
""" |
|
|
|
model_type = "bark" |
|
|
|
def __init__( |
|
self, |
|
semantic_config: Dict = None, |
|
coarse_acoustics_config: Dict = None, |
|
fine_acoustics_config: Dict = None, |
|
codec_config: Dict = None, |
|
initializer_range=0.02, |
|
**kwargs, |
|
): |
|
if semantic_config is None: |
|
semantic_config = {} |
|
logger.info("semantic_config is None. initializing the semantic model with default values.") |
|
|
|
if coarse_acoustics_config is None: |
|
coarse_acoustics_config = {} |
|
logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.") |
|
|
|
if fine_acoustics_config is None: |
|
fine_acoustics_config = {} |
|
logger.info("fine_acoustics_config is None. initializing the fine model with default values.") |
|
|
|
if codec_config is None: |
|
codec_config = {} |
|
logger.info("codec_config is None. initializing the codec model with default values.") |
|
|
|
self.semantic_config = BarkSemanticConfig(**semantic_config) |
|
self.coarse_acoustics_config = BarkCoarseConfig(**coarse_acoustics_config) |
|
self.fine_acoustics_config = BarkFineConfig(**fine_acoustics_config) |
|
codec_model_type = codec_config["model_type"] if "model_type" in codec_config else "encodec" |
|
self.codec_config = CONFIG_MAPPING[codec_model_type](**codec_config) |
|
|
|
self.initializer_range = initializer_range |
|
|
|
super().__init__(**kwargs) |
|
|
|
@classmethod |
|
def from_sub_model_configs( |
|
cls, |
|
semantic_config: BarkSemanticConfig, |
|
coarse_acoustics_config: BarkCoarseConfig, |
|
fine_acoustics_config: BarkFineConfig, |
|
codec_config: PretrainedConfig, |
|
**kwargs, |
|
): |
|
r""" |
|
Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration. |
|
|
|
Returns: |
|
[`BarkConfig`]: An instance of a configuration object |
|
""" |
|
return cls( |
|
semantic_config=semantic_config.to_dict(), |
|
coarse_acoustics_config=coarse_acoustics_config.to_dict(), |
|
fine_acoustics_config=fine_acoustics_config.to_dict(), |
|
codec_config=codec_config.to_dict(), |
|
**kwargs, |
|
) |
|
|