|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" AutoProcessor class.""" |
|
import importlib |
|
import inspect |
|
import json |
|
import os |
|
import warnings |
|
from collections import OrderedDict |
|
|
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code |
|
from ...feature_extraction_utils import FeatureExtractionMixin |
|
from ...image_processing_utils import ImageProcessingMixin |
|
from ...tokenization_utils import TOKENIZER_CONFIG_FILE |
|
from ...utils import FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging |
|
from .auto_factory import _LazyAutoMapping |
|
from .configuration_auto import ( |
|
CONFIG_MAPPING_NAMES, |
|
AutoConfig, |
|
model_type_to_module_name, |
|
replace_list_option_in_docstrings, |
|
) |
|
from .feature_extraction_auto import AutoFeatureExtractor |
|
from .image_processing_auto import AutoImageProcessor |
|
from .tokenization_auto import AutoTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
PROCESSOR_MAPPING_NAMES = OrderedDict( |
|
[ |
|
("align", "AlignProcessor"), |
|
("altclip", "AltCLIPProcessor"), |
|
("bark", "BarkProcessor"), |
|
("blip", "BlipProcessor"), |
|
("blip-2", "Blip2Processor"), |
|
("bridgetower", "BridgeTowerProcessor"), |
|
("chinese_clip", "ChineseCLIPProcessor"), |
|
("clap", "ClapProcessor"), |
|
("clip", "CLIPProcessor"), |
|
("clipseg", "CLIPSegProcessor"), |
|
("flava", "FlavaProcessor"), |
|
("git", "GitProcessor"), |
|
("groupvit", "CLIPProcessor"), |
|
("hubert", "Wav2Vec2Processor"), |
|
("idefics", "IdeficsProcessor"), |
|
("instructblip", "InstructBlipProcessor"), |
|
("layoutlmv2", "LayoutLMv2Processor"), |
|
("layoutlmv3", "LayoutLMv3Processor"), |
|
("markuplm", "MarkupLMProcessor"), |
|
("mctct", "MCTCTProcessor"), |
|
("mgp-str", "MgpstrProcessor"), |
|
("oneformer", "OneFormerProcessor"), |
|
("owlvit", "OwlViTProcessor"), |
|
("pix2struct", "Pix2StructProcessor"), |
|
("pop2piano", "Pop2PianoProcessor"), |
|
("sam", "SamProcessor"), |
|
("sew", "Wav2Vec2Processor"), |
|
("sew-d", "Wav2Vec2Processor"), |
|
("speech_to_text", "Speech2TextProcessor"), |
|
("speech_to_text_2", "Speech2Text2Processor"), |
|
("speecht5", "SpeechT5Processor"), |
|
("trocr", "TrOCRProcessor"), |
|
("tvlt", "TvltProcessor"), |
|
("unispeech", "Wav2Vec2Processor"), |
|
("unispeech-sat", "Wav2Vec2Processor"), |
|
("vilt", "ViltProcessor"), |
|
("vision-text-dual-encoder", "VisionTextDualEncoderProcessor"), |
|
("wav2vec2", "Wav2Vec2Processor"), |
|
("wav2vec2-conformer", "Wav2Vec2Processor"), |
|
("wavlm", "Wav2Vec2Processor"), |
|
("whisper", "WhisperProcessor"), |
|
("xclip", "XCLIPProcessor"), |
|
] |
|
) |
|
|
|
PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, PROCESSOR_MAPPING_NAMES) |
|
|
|
|
|
def processor_class_from_name(class_name: str): |
|
for module_name, processors in PROCESSOR_MAPPING_NAMES.items(): |
|
if class_name in processors: |
|
module_name = model_type_to_module_name(module_name) |
|
|
|
module = importlib.import_module(f".{module_name}", "transformers.models") |
|
try: |
|
return getattr(module, class_name) |
|
except AttributeError: |
|
continue |
|
|
|
for processor in PROCESSOR_MAPPING._extra_content.values(): |
|
if getattr(processor, "__name__", None) == class_name: |
|
return processor |
|
|
|
|
|
|
|
main_module = importlib.import_module("transformers") |
|
if hasattr(main_module, class_name): |
|
return getattr(main_module, class_name) |
|
|
|
return None |
|
|
|
|
|
class AutoProcessor: |
|
r""" |
|
This is a generic processor class that will be instantiated as one of the processor classes of the library when |
|
created with the [`AutoProcessor.from_pretrained`] class method. |
|
|
|
This class cannot be instantiated directly using `__init__()` (throws an error). |
|
""" |
|
|
|
def __init__(self): |
|
raise EnvironmentError( |
|
"AutoProcessor is designed to be instantiated " |
|
"using the `AutoProcessor.from_pretrained(pretrained_model_name_or_path)` method." |
|
) |
|
|
|
@classmethod |
|
@replace_list_option_in_docstrings(PROCESSOR_MAPPING_NAMES) |
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): |
|
r""" |
|
Instantiate one of the processor classes of the library from a pretrained model vocabulary. |
|
|
|
The processor class to instantiate is selected based on the `model_type` property of the config object (either |
|
passed as an argument or loaded from `pretrained_model_name_or_path` if possible): |
|
|
|
List options |
|
|
|
Params: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on |
|
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or |
|
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- a path to a *directory* containing a processor files saved using the `save_pretrained()` method, |
|
e.g., `./my_model_directory/`. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model feature extractor should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the feature extractor files and override the cached versions |
|
if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file |
|
exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`): |
|
If `False`, then this function returns just the final feature extractor object. If `True`, then this |
|
functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary |
|
consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of |
|
`kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. |
|
trust_remote_code (`bool`, *optional*, defaults to `False`): |
|
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option |
|
should only be set to `True` for repositories you trust and in which you have read the code, as it will |
|
execute code present on the Hub on your local machine. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
The values in kwargs of any keys which are feature extractor attributes will be used to override the |
|
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is |
|
controlled by the `return_unused_kwargs` keyword parameter. |
|
|
|
<Tip> |
|
|
|
Passing `token=True` is required when you want to use a private model. |
|
|
|
</Tip> |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoProcessor |
|
|
|
>>> # Download processor from huggingface.co and cache. |
|
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") |
|
|
|
>>> # If processor files are in a directory (e.g. processor was saved using *save_pretrained('./test/saved_model/')*) |
|
>>> # processor = AutoProcessor.from_pretrained("./test/saved_model/") |
|
```""" |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if kwargs.get("token", None) is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
kwargs["token"] = use_auth_token |
|
|
|
config = kwargs.pop("config", None) |
|
trust_remote_code = kwargs.pop("trust_remote_code", None) |
|
kwargs["_from_auto"] = True |
|
|
|
processor_class = None |
|
processor_auto_map = None |
|
|
|
|
|
|
|
get_file_from_repo_kwargs = { |
|
key: kwargs[key] for key in inspect.signature(get_file_from_repo).parameters.keys() if key in kwargs |
|
} |
|
|
|
preprocessor_config_file = get_file_from_repo( |
|
pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, **get_file_from_repo_kwargs |
|
) |
|
if preprocessor_config_file is not None: |
|
config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs) |
|
processor_class = config_dict.get("processor_class", None) |
|
if "AutoProcessor" in config_dict.get("auto_map", {}): |
|
processor_auto_map = config_dict["auto_map"]["AutoProcessor"] |
|
|
|
|
|
if preprocessor_config_file is not None and processor_class is None: |
|
config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) |
|
processor_class = config_dict.get("processor_class", None) |
|
if "AutoProcessor" in config_dict.get("auto_map", {}): |
|
processor_auto_map = config_dict["auto_map"]["AutoProcessor"] |
|
|
|
if processor_class is None: |
|
|
|
tokenizer_config_file = get_file_from_repo( |
|
pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, **get_file_from_repo_kwargs |
|
) |
|
if tokenizer_config_file is not None: |
|
with open(tokenizer_config_file, encoding="utf-8") as reader: |
|
config_dict = json.load(reader) |
|
|
|
processor_class = config_dict.get("processor_class", None) |
|
if "AutoProcessor" in config_dict.get("auto_map", {}): |
|
processor_auto_map = config_dict["auto_map"]["AutoProcessor"] |
|
|
|
if processor_class is None: |
|
|
|
if not isinstance(config, PretrainedConfig): |
|
config = AutoConfig.from_pretrained( |
|
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs |
|
) |
|
|
|
|
|
processor_class = getattr(config, "processor_class", None) |
|
if hasattr(config, "auto_map") and "AutoProcessor" in config.auto_map: |
|
processor_auto_map = config.auto_map["AutoProcessor"] |
|
|
|
if processor_class is not None: |
|
processor_class = processor_class_from_name(processor_class) |
|
|
|
has_remote_code = processor_auto_map is not None |
|
has_local_code = processor_class is not None or type(config) in PROCESSOR_MAPPING |
|
trust_remote_code = resolve_trust_remote_code( |
|
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code |
|
) |
|
|
|
if has_remote_code and trust_remote_code: |
|
processor_class = get_class_from_dynamic_module( |
|
processor_auto_map, pretrained_model_name_or_path, **kwargs |
|
) |
|
_ = kwargs.pop("code_revision", None) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
processor_class.register_for_auto_class() |
|
return processor_class.from_pretrained( |
|
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs |
|
) |
|
elif processor_class is not None: |
|
return processor_class.from_pretrained( |
|
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs |
|
) |
|
|
|
elif type(config) in PROCESSOR_MAPPING: |
|
return PROCESSOR_MAPPING[type(config)].from_pretrained(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
|
|
try: |
|
return AutoTokenizer.from_pretrained( |
|
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs |
|
) |
|
except Exception: |
|
try: |
|
return AutoImageProcessor.from_pretrained( |
|
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs |
|
) |
|
except Exception: |
|
pass |
|
|
|
try: |
|
return AutoFeatureExtractor.from_pretrained( |
|
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs |
|
) |
|
except Exception: |
|
pass |
|
|
|
raise ValueError( |
|
f"Unrecognized processing class in {pretrained_model_name_or_path}. Can't instantiate a processor, a " |
|
"tokenizer, an image processor or a feature extractor for this model. Make sure the repository contains" |
|
"the files of at least one of those processing classes." |
|
) |
|
|
|
@staticmethod |
|
def register(config_class, processor_class, exist_ok=False): |
|
""" |
|
Register a new processor for this class. |
|
|
|
Args: |
|
config_class ([`PretrainedConfig`]): |
|
The configuration corresponding to the model to register. |
|
processor_class ([`FeatureExtractorMixin`]): The processor to register. |
|
""" |
|
PROCESSOR_MAPPING.register(config_class, processor_class, exist_ok=exist_ok) |
|
|