|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" AutoFeatureExtractor class.""" |
|
import importlib |
|
import json |
|
import os |
|
import warnings |
|
from collections import OrderedDict |
|
from typing import Dict, Optional, Union |
|
|
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code |
|
from ...feature_extraction_utils import FeatureExtractionMixin |
|
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging |
|
from .auto_factory import _LazyAutoMapping |
|
from .configuration_auto import ( |
|
CONFIG_MAPPING_NAMES, |
|
AutoConfig, |
|
model_type_to_module_name, |
|
replace_list_option_in_docstrings, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
FEATURE_EXTRACTOR_MAPPING_NAMES = OrderedDict( |
|
[ |
|
("audio-spectrogram-transformer", "ASTFeatureExtractor"), |
|
("beit", "BeitFeatureExtractor"), |
|
("chinese_clip", "ChineseCLIPFeatureExtractor"), |
|
("clap", "ClapFeatureExtractor"), |
|
("clip", "CLIPFeatureExtractor"), |
|
("clipseg", "ViTFeatureExtractor"), |
|
("conditional_detr", "ConditionalDetrFeatureExtractor"), |
|
("convnext", "ConvNextFeatureExtractor"), |
|
("cvt", "ConvNextFeatureExtractor"), |
|
("data2vec-audio", "Wav2Vec2FeatureExtractor"), |
|
("data2vec-vision", "BeitFeatureExtractor"), |
|
("deformable_detr", "DeformableDetrFeatureExtractor"), |
|
("deit", "DeiTFeatureExtractor"), |
|
("detr", "DetrFeatureExtractor"), |
|
("dinat", "ViTFeatureExtractor"), |
|
("donut-swin", "DonutFeatureExtractor"), |
|
("dpt", "DPTFeatureExtractor"), |
|
("encodec", "EncodecFeatureExtractor"), |
|
("flava", "FlavaFeatureExtractor"), |
|
("glpn", "GLPNFeatureExtractor"), |
|
("groupvit", "CLIPFeatureExtractor"), |
|
("hubert", "Wav2Vec2FeatureExtractor"), |
|
("imagegpt", "ImageGPTFeatureExtractor"), |
|
("layoutlmv2", "LayoutLMv2FeatureExtractor"), |
|
("layoutlmv3", "LayoutLMv3FeatureExtractor"), |
|
("levit", "LevitFeatureExtractor"), |
|
("maskformer", "MaskFormerFeatureExtractor"), |
|
("mctct", "MCTCTFeatureExtractor"), |
|
("mobilenet_v1", "MobileNetV1FeatureExtractor"), |
|
("mobilenet_v2", "MobileNetV2FeatureExtractor"), |
|
("mobilevit", "MobileViTFeatureExtractor"), |
|
("nat", "ViTFeatureExtractor"), |
|
("owlvit", "OwlViTFeatureExtractor"), |
|
("perceiver", "PerceiverFeatureExtractor"), |
|
("poolformer", "PoolFormerFeatureExtractor"), |
|
("pop2piano", "Pop2PianoFeatureExtractor"), |
|
("regnet", "ConvNextFeatureExtractor"), |
|
("resnet", "ConvNextFeatureExtractor"), |
|
("segformer", "SegformerFeatureExtractor"), |
|
("sew", "Wav2Vec2FeatureExtractor"), |
|
("sew-d", "Wav2Vec2FeatureExtractor"), |
|
("speech_to_text", "Speech2TextFeatureExtractor"), |
|
("speecht5", "SpeechT5FeatureExtractor"), |
|
("swiftformer", "ViTFeatureExtractor"), |
|
("swin", "ViTFeatureExtractor"), |
|
("swinv2", "ViTFeatureExtractor"), |
|
("table-transformer", "DetrFeatureExtractor"), |
|
("timesformer", "VideoMAEFeatureExtractor"), |
|
("tvlt", "TvltFeatureExtractor"), |
|
("unispeech", "Wav2Vec2FeatureExtractor"), |
|
("unispeech-sat", "Wav2Vec2FeatureExtractor"), |
|
("van", "ConvNextFeatureExtractor"), |
|
("videomae", "VideoMAEFeatureExtractor"), |
|
("vilt", "ViltFeatureExtractor"), |
|
("vit", "ViTFeatureExtractor"), |
|
("vit_mae", "ViTFeatureExtractor"), |
|
("vit_msn", "ViTFeatureExtractor"), |
|
("wav2vec2", "Wav2Vec2FeatureExtractor"), |
|
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), |
|
("wavlm", "Wav2Vec2FeatureExtractor"), |
|
("whisper", "WhisperFeatureExtractor"), |
|
("xclip", "CLIPFeatureExtractor"), |
|
("yolos", "YolosFeatureExtractor"), |
|
] |
|
) |
|
|
|
FEATURE_EXTRACTOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) |
|
|
|
|
|
def feature_extractor_class_from_name(class_name: str): |
|
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): |
|
if class_name in extractors: |
|
module_name = model_type_to_module_name(module_name) |
|
|
|
module = importlib.import_module(f".{module_name}", "transformers.models") |
|
try: |
|
return getattr(module, class_name) |
|
except AttributeError: |
|
continue |
|
|
|
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): |
|
if getattr(extractor, "__name__", None) == class_name: |
|
return extractor |
|
|
|
|
|
|
|
main_module = importlib.import_module("transformers") |
|
if hasattr(main_module, class_name): |
|
return getattr(main_module, class_name) |
|
|
|
return None |
|
|
|
|
|
def get_feature_extractor_config( |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
force_download: bool = False, |
|
resume_download: bool = False, |
|
proxies: Optional[Dict[str, str]] = None, |
|
token: Optional[Union[bool, str]] = None, |
|
revision: Optional[str] = None, |
|
local_files_only: bool = False, |
|
**kwargs, |
|
): |
|
""" |
|
Loads the tokenizer configuration from a pretrained model tokenizer configuration. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on |
|
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced |
|
under a user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- a path to a *directory* containing a configuration file saved using the |
|
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. |
|
|
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard |
|
cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the configuration files and override the cached versions if they |
|
exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
If `True`, will only try to load the tokenizer configuration from local files. |
|
|
|
<Tip> |
|
|
|
Passing `token=True` is required when you want to use a private model. |
|
|
|
</Tip> |
|
|
|
Returns: |
|
`Dict`: The configuration of the tokenizer. |
|
|
|
Examples: |
|
|
|
```python |
|
# Download configuration from huggingface.co and cache. |
|
tokenizer_config = get_tokenizer_config("bert-base-uncased") |
|
# This model does not have a tokenizer config so the result will be an empty dict. |
|
tokenizer_config = get_tokenizer_config("xlm-roberta-base") |
|
|
|
# Save a pretrained tokenizer locally and you can reload its config |
|
from transformers import AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") |
|
tokenizer.save_pretrained("tokenizer-test") |
|
tokenizer_config = get_tokenizer_config("tokenizer-test") |
|
```""" |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") |
|
token = use_auth_token |
|
|
|
resolved_config_file = get_file_from_repo( |
|
pretrained_model_name_or_path, |
|
FEATURE_EXTRACTOR_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
token=token, |
|
revision=revision, |
|
local_files_only=local_files_only, |
|
) |
|
if resolved_config_file is None: |
|
logger.info( |
|
"Could not locate the feature extractor configuration file, will try to use the model config instead." |
|
) |
|
return {} |
|
|
|
with open(resolved_config_file, encoding="utf-8") as reader: |
|
return json.load(reader) |
|
|
|
|
|
class AutoFeatureExtractor: |
|
r""" |
|
This is a generic feature extractor class that will be instantiated as one of the feature extractor classes of the |
|
library when created with the [`AutoFeatureExtractor.from_pretrained`] class method. |
|
|
|
This class cannot be instantiated directly using `__init__()` (throws an error). |
|
""" |
|
|
|
def __init__(self): |
|
raise EnvironmentError( |
|
"AutoFeatureExtractor is designed to be instantiated " |
|
"using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." |
|
) |
|
|
|
@classmethod |
|
@replace_list_option_in_docstrings(FEATURE_EXTRACTOR_MAPPING_NAMES) |
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): |
|
r""" |
|
Instantiate one of the feature extractor classes of the library from a pretrained model vocabulary. |
|
|
|
The feature extractor class to instantiate is selected based on the `model_type` property of the config object |
|
(either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's |
|
missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: |
|
|
|
List options |
|
|
|
Params: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on |
|
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or |
|
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- a path to a *directory* containing a feature extractor file saved using the |
|
[`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g., |
|
`./my_model_directory/`. |
|
- a path or url to a saved feature extractor JSON *file*, e.g., |
|
`./my_model_directory/preprocessor_config.json`. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model feature extractor should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the feature extractor files and override the cached versions |
|
if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file |
|
exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`): |
|
If `False`, then this function returns just the final feature extractor object. If `True`, then this |
|
functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary |
|
consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of |
|
`kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. |
|
trust_remote_code (`bool`, *optional*, defaults to `False`): |
|
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option |
|
should only be set to `True` for repositories you trust and in which you have read the code, as it will |
|
execute code present on the Hub on your local machine. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
The values in kwargs of any keys which are feature extractor attributes will be used to override the |
|
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is |
|
controlled by the `return_unused_kwargs` keyword parameter. |
|
|
|
<Tip> |
|
|
|
Passing `token=True` is required when you want to use a private model. |
|
|
|
</Tip> |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoFeatureExtractor |
|
|
|
>>> # Download feature extractor from huggingface.co and cache. |
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") |
|
|
|
>>> # If feature extractor files are in a directory (e.g. feature extractor was saved using *save_pretrained('./test/saved_model/')*) |
|
>>> # feature_extractor = AutoFeatureExtractor.from_pretrained("./test/saved_model/") |
|
```""" |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if kwargs.get("token", None) is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
kwargs["token"] = use_auth_token |
|
|
|
config = kwargs.pop("config", None) |
|
trust_remote_code = kwargs.pop("trust_remote_code", None) |
|
kwargs["_from_auto"] = True |
|
|
|
config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) |
|
feature_extractor_class = config_dict.get("feature_extractor_type", None) |
|
feature_extractor_auto_map = None |
|
if "AutoFeatureExtractor" in config_dict.get("auto_map", {}): |
|
feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"] |
|
|
|
|
|
if feature_extractor_class is None and feature_extractor_auto_map is None: |
|
if not isinstance(config, PretrainedConfig): |
|
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) |
|
|
|
feature_extractor_class = getattr(config, "feature_extractor_type", None) |
|
if hasattr(config, "auto_map") and "AutoFeatureExtractor" in config.auto_map: |
|
feature_extractor_auto_map = config.auto_map["AutoFeatureExtractor"] |
|
|
|
if feature_extractor_class is not None: |
|
feature_extractor_class = feature_extractor_class_from_name(feature_extractor_class) |
|
|
|
has_remote_code = feature_extractor_auto_map is not None |
|
has_local_code = feature_extractor_class is not None or type(config) in FEATURE_EXTRACTOR_MAPPING |
|
trust_remote_code = resolve_trust_remote_code( |
|
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code |
|
) |
|
|
|
if has_remote_code and trust_remote_code: |
|
feature_extractor_class = get_class_from_dynamic_module( |
|
feature_extractor_auto_map, pretrained_model_name_or_path, **kwargs |
|
) |
|
_ = kwargs.pop("code_revision", None) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
feature_extractor_class.register_for_auto_class() |
|
return feature_extractor_class.from_dict(config_dict, **kwargs) |
|
elif feature_extractor_class is not None: |
|
return feature_extractor_class.from_dict(config_dict, **kwargs) |
|
|
|
elif type(config) in FEATURE_EXTRACTOR_MAPPING: |
|
feature_extractor_class = FEATURE_EXTRACTOR_MAPPING[type(config)] |
|
return feature_extractor_class.from_dict(config_dict, **kwargs) |
|
|
|
raise ValueError( |
|
f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " |
|
f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " |
|
f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}" |
|
) |
|
|
|
@staticmethod |
|
def register(config_class, feature_extractor_class, exist_ok=False): |
|
""" |
|
Register a new feature extractor for this class. |
|
|
|
Args: |
|
config_class ([`PretrainedConfig`]): |
|
The configuration corresponding to the model to register. |
|
feature_extractor_class ([`FeatureExtractorMixin`]): The feature extractor to register. |
|
""" |
|
FEATURE_EXTRACTOR_MAPPING.register(config_class, feature_extractor_class, exist_ok=exist_ok) |
|
|