|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" AltCLIP model configuration""" |
|
import os |
|
from typing import Union |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class AltCLIPTextConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`AltCLIPTextModel`]. It is used to instantiate a |
|
AltCLIP text model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the AltCLIP |
|
[BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 250002): |
|
Vocabulary size of the AltCLIP model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`AltCLIPTextModel`]. |
|
hidden_size (`int`, *optional*, defaults to 1024): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 24): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 514): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling [`AltCLIPTextModel`] |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-5): |
|
The epsilon used by the layer normalization layers. |
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): |
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For |
|
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to |
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). |
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models |
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
project_dim (`int`, *optional*, defaults to 768): |
|
The dimentions of the teacher model before the mapping layer. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AltCLIPTextModel, AltCLIPTextConfig |
|
|
|
>>> # Initializing a AltCLIPTextConfig with BAAI/AltCLIP style configuration |
|
>>> configuration = AltCLIPTextConfig() |
|
|
|
>>> # Initializing a AltCLIPTextModel (with random weights) from the BAAI/AltCLIP style configuration |
|
>>> model = AltCLIPTextModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "altclip_text_model" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=250002, |
|
hidden_size=1024, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
intermediate_size=4096, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=514, |
|
type_vocab_size=1, |
|
initializer_range=0.02, |
|
initializer_factor=0.02, |
|
layer_norm_eps=1e-05, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
position_embedding_type="absolute", |
|
use_cache=True, |
|
project_dim=768, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.initializer_factor = initializer_factor |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
self.project_dim = project_dim |
|
|
|
|
|
class AltCLIPVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`AltCLIPModel`]. It is used to instantiate an |
|
AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the AltCLIP |
|
[BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 32): |
|
The size (resolution) of each patch. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-5): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
initializer_factor (`float``, *optional*, defaults to 1): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AltCLIPVisionConfig, AltCLIPVisionModel |
|
|
|
>>> # Initializing a AltCLIPVisionConfig with BAAI/AltCLIP style configuration |
|
>>> configuration = AltCLIPVisionConfig() |
|
|
|
>>> # Initializing a AltCLIPVisionModel (with random weights) from the BAAI/AltCLIP style configuration |
|
>>> model = AltCLIPVisionModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "altclip_vision_model" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
projection_dim=512, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_channels=3, |
|
image_size=224, |
|
patch_size=32, |
|
hidden_act="quick_gelu", |
|
layer_norm_eps=1e-5, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.initializer_range = initializer_range |
|
self.initializer_factor = initializer_factor |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "altclip": |
|
config_dict = config_dict["vision_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class AltCLIPConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`AltCLIPModel`]. It is used to instantiate an |
|
AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the AltCLIP |
|
[BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
text_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`AltCLIPTextConfig`]. |
|
vision_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`AltCLIPVisionConfig`]. |
|
projection_dim (`int`, *optional*, defaults to 768): |
|
Dimentionality of text and vision projection layers. |
|
logit_scale_init_value (`float`, *optional*, defaults to 2.6592): |
|
The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation. |
|
kwargs (*optional*): |
|
Dictionary of keyword arguments. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AltCLIPConfig, AltCLIPModel |
|
|
|
>>> # Initializing a AltCLIPConfig with BAAI/AltCLIP style configuration |
|
>>> configuration = AltCLIPConfig() |
|
|
|
>>> # Initializing a AltCLIPModel (with random weights) from the BAAI/AltCLIP style configuration |
|
>>> model = AltCLIPModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
|
|
>>> # We can also initialize a AltCLIPConfig from a AltCLIPTextConfig and a AltCLIPVisionConfig |
|
|
|
>>> # Initializing a AltCLIPText and AltCLIPVision configuration |
|
>>> config_text = AltCLIPTextConfig() |
|
>>> config_vision = AltCLIPVisionConfig() |
|
|
|
>>> config = AltCLIPConfig.from_text_vision_configs(config_text, config_vision) |
|
```""" |
|
|
|
model_type = "altclip" |
|
|
|
def __init__( |
|
self, text_config=None, vision_config=None, projection_dim=768, logit_scale_init_value=2.6592, **kwargs |
|
): |
|
|
|
|
|
|
|
text_config_dict = kwargs.pop("text_config_dict", None) |
|
vision_config_dict = kwargs.pop("vision_config_dict", None) |
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
|
|
|
|
if text_config_dict is not None: |
|
if text_config is None: |
|
text_config = {} |
|
|
|
|
|
_text_config_dict = AltCLIPTextConfig(**text_config_dict).to_dict() |
|
|
|
|
|
for key, value in _text_config_dict.items(): |
|
if key in text_config and value != text_config[key] and key not in ["transformers_version"]: |
|
|
|
if key in text_config_dict: |
|
message = ( |
|
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " |
|
f'The value `text_config_dict["{key}"]` will be used instead.' |
|
) |
|
|
|
else: |
|
message = ( |
|
f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " |
|
f'value `text_config["{key}"]` will be overriden.' |
|
) |
|
logger.warning(message) |
|
|
|
|
|
text_config.update(_text_config_dict) |
|
|
|
if vision_config_dict is not None: |
|
if vision_config is None: |
|
vision_config = {} |
|
|
|
|
|
_vision_config_dict = AltCLIPVisionConfig(**vision_config_dict).to_dict() |
|
|
|
if "id2label" in _vision_config_dict: |
|
_vision_config_dict["id2label"] = { |
|
str(key): value for key, value in _vision_config_dict["id2label"].items() |
|
} |
|
|
|
|
|
for key, value in _vision_config_dict.items(): |
|
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: |
|
|
|
if key in vision_config_dict: |
|
message = ( |
|
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " |
|
f'values. The value `vision_config_dict["{key}"]` will be used instead.' |
|
) |
|
|
|
else: |
|
message = ( |
|
f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " |
|
f'The value `vision_config["{key}"]` will be overriden.' |
|
) |
|
logger.warning(message) |
|
|
|
|
|
vision_config.update(_vision_config_dict) |
|
|
|
if text_config is None: |
|
text_config = {} |
|
logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.") |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.") |
|
|
|
self.text_config = AltCLIPTextConfig(**text_config) |
|
self.vision_config = AltCLIPVisionConfig(**vision_config) |
|
|
|
self.projection_dim = projection_dim |
|
self.logit_scale_init_value = logit_scale_init_value |
|
self.initializer_factor = 1.0 |
|
|
|
@classmethod |
|
def from_text_vision_configs(cls, text_config: AltCLIPTextConfig, vision_config: AltCLIPVisionConfig, **kwargs): |
|
r""" |
|
Instantiate a [`AltCLIPConfig`] (or a derived class) from altclip text model configuration and altclip vision |
|
model configuration. |
|
|
|
Returns: |
|
[`AltCLIPConfig`]: An instance of a configuration object |
|
""" |
|
|
|
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) |
|
|