|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from functools import partial |
|
from multiprocessing import Pool, cpu_count |
|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
from ...models.bert.tokenization_bert import whitespace_tokenize |
|
from ...tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TruncationStrategy |
|
from ...utils import is_tf_available, is_torch_available, logging |
|
from .utils import DataProcessor |
|
|
|
|
|
|
|
MULTI_SEP_TOKENS_TOKENIZERS_SET = {"roberta", "camembert", "bart", "mpnet"} |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from torch.utils.data import TensorDataset |
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): |
|
"""Returns tokenized answer spans that better match the annotated answer.""" |
|
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) |
|
|
|
for new_start in range(input_start, input_end + 1): |
|
for new_end in range(input_end, new_start - 1, -1): |
|
text_span = " ".join(doc_tokens[new_start : (new_end + 1)]) |
|
if text_span == tok_answer_text: |
|
return (new_start, new_end) |
|
|
|
return (input_start, input_end) |
|
|
|
|
|
def _check_is_max_context(doc_spans, cur_span_index, position): |
|
"""Check if this is the 'max context' doc span for the token.""" |
|
best_score = None |
|
best_span_index = None |
|
for span_index, doc_span in enumerate(doc_spans): |
|
end = doc_span.start + doc_span.length - 1 |
|
if position < doc_span.start: |
|
continue |
|
if position > end: |
|
continue |
|
num_left_context = position - doc_span.start |
|
num_right_context = end - position |
|
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length |
|
if best_score is None or score > best_score: |
|
best_score = score |
|
best_span_index = span_index |
|
|
|
return cur_span_index == best_span_index |
|
|
|
|
|
def _new_check_is_max_context(doc_spans, cur_span_index, position): |
|
"""Check if this is the 'max context' doc span for the token.""" |
|
|
|
|
|
best_score = None |
|
best_span_index = None |
|
for span_index, doc_span in enumerate(doc_spans): |
|
end = doc_span["start"] + doc_span["length"] - 1 |
|
if position < doc_span["start"]: |
|
continue |
|
if position > end: |
|
continue |
|
num_left_context = position - doc_span["start"] |
|
num_right_context = end - position |
|
score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"] |
|
if best_score is None or score > best_score: |
|
best_score = score |
|
best_span_index = span_index |
|
|
|
return cur_span_index == best_span_index |
|
|
|
|
|
def _is_whitespace(c): |
|
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: |
|
return True |
|
return False |
|
|
|
|
|
def squad_convert_example_to_features( |
|
example, max_seq_length, doc_stride, max_query_length, padding_strategy, is_training |
|
): |
|
features = [] |
|
if is_training and not example.is_impossible: |
|
|
|
start_position = example.start_position |
|
end_position = example.end_position |
|
|
|
|
|
actual_text = " ".join(example.doc_tokens[start_position : (end_position + 1)]) |
|
cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text)) |
|
if actual_text.find(cleaned_answer_text) == -1: |
|
logger.warning(f"Could not find answer: '{actual_text}' vs. '{cleaned_answer_text}'") |
|
return [] |
|
|
|
tok_to_orig_index = [] |
|
orig_to_tok_index = [] |
|
all_doc_tokens = [] |
|
for i, token in enumerate(example.doc_tokens): |
|
orig_to_tok_index.append(len(all_doc_tokens)) |
|
if tokenizer.__class__.__name__ in [ |
|
"RobertaTokenizer", |
|
"LongformerTokenizer", |
|
"BartTokenizer", |
|
"RobertaTokenizerFast", |
|
"LongformerTokenizerFast", |
|
"BartTokenizerFast", |
|
]: |
|
sub_tokens = tokenizer.tokenize(token, add_prefix_space=True) |
|
else: |
|
sub_tokens = tokenizer.tokenize(token) |
|
for sub_token in sub_tokens: |
|
tok_to_orig_index.append(i) |
|
all_doc_tokens.append(sub_token) |
|
|
|
if is_training and not example.is_impossible: |
|
tok_start_position = orig_to_tok_index[example.start_position] |
|
if example.end_position < len(example.doc_tokens) - 1: |
|
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 |
|
else: |
|
tok_end_position = len(all_doc_tokens) - 1 |
|
|
|
(tok_start_position, tok_end_position) = _improve_answer_span( |
|
all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text |
|
) |
|
|
|
spans = [] |
|
|
|
truncated_query = tokenizer.encode( |
|
example.question_text, add_special_tokens=False, truncation=True, max_length=max_query_length |
|
) |
|
|
|
|
|
|
|
tokenizer_type = type(tokenizer).__name__.replace("Tokenizer", "").lower() |
|
sequence_added_tokens = ( |
|
tokenizer.model_max_length - tokenizer.max_len_single_sentence + 1 |
|
if tokenizer_type in MULTI_SEP_TOKENS_TOKENIZERS_SET |
|
else tokenizer.model_max_length - tokenizer.max_len_single_sentence |
|
) |
|
sequence_pair_added_tokens = tokenizer.model_max_length - tokenizer.max_len_sentences_pair |
|
|
|
span_doc_tokens = all_doc_tokens |
|
while len(spans) * doc_stride < len(all_doc_tokens): |
|
|
|
if tokenizer.padding_side == "right": |
|
texts = truncated_query |
|
pairs = span_doc_tokens |
|
truncation = TruncationStrategy.ONLY_SECOND.value |
|
else: |
|
texts = span_doc_tokens |
|
pairs = truncated_query |
|
truncation = TruncationStrategy.ONLY_FIRST.value |
|
|
|
encoded_dict = tokenizer.encode_plus( |
|
texts, |
|
pairs, |
|
truncation=truncation, |
|
padding=padding_strategy, |
|
max_length=max_seq_length, |
|
return_overflowing_tokens=True, |
|
stride=max_seq_length - doc_stride - len(truncated_query) - sequence_pair_added_tokens, |
|
return_token_type_ids=True, |
|
) |
|
|
|
paragraph_len = min( |
|
len(all_doc_tokens) - len(spans) * doc_stride, |
|
max_seq_length - len(truncated_query) - sequence_pair_added_tokens, |
|
) |
|
|
|
if tokenizer.pad_token_id in encoded_dict["input_ids"]: |
|
if tokenizer.padding_side == "right": |
|
non_padded_ids = encoded_dict["input_ids"][: encoded_dict["input_ids"].index(tokenizer.pad_token_id)] |
|
else: |
|
last_padding_id_position = ( |
|
len(encoded_dict["input_ids"]) - 1 - encoded_dict["input_ids"][::-1].index(tokenizer.pad_token_id) |
|
) |
|
non_padded_ids = encoded_dict["input_ids"][last_padding_id_position + 1 :] |
|
|
|
else: |
|
non_padded_ids = encoded_dict["input_ids"] |
|
|
|
tokens = tokenizer.convert_ids_to_tokens(non_padded_ids) |
|
|
|
token_to_orig_map = {} |
|
for i in range(paragraph_len): |
|
index = len(truncated_query) + sequence_added_tokens + i if tokenizer.padding_side == "right" else i |
|
token_to_orig_map[index] = tok_to_orig_index[len(spans) * doc_stride + i] |
|
|
|
encoded_dict["paragraph_len"] = paragraph_len |
|
encoded_dict["tokens"] = tokens |
|
encoded_dict["token_to_orig_map"] = token_to_orig_map |
|
encoded_dict["truncated_query_with_special_tokens_length"] = len(truncated_query) + sequence_added_tokens |
|
encoded_dict["token_is_max_context"] = {} |
|
encoded_dict["start"] = len(spans) * doc_stride |
|
encoded_dict["length"] = paragraph_len |
|
|
|
spans.append(encoded_dict) |
|
|
|
if "overflowing_tokens" not in encoded_dict or ( |
|
"overflowing_tokens" in encoded_dict and len(encoded_dict["overflowing_tokens"]) == 0 |
|
): |
|
break |
|
span_doc_tokens = encoded_dict["overflowing_tokens"] |
|
|
|
for doc_span_index in range(len(spans)): |
|
for j in range(spans[doc_span_index]["paragraph_len"]): |
|
is_max_context = _new_check_is_max_context(spans, doc_span_index, doc_span_index * doc_stride + j) |
|
index = ( |
|
j |
|
if tokenizer.padding_side == "left" |
|
else spans[doc_span_index]["truncated_query_with_special_tokens_length"] + j |
|
) |
|
spans[doc_span_index]["token_is_max_context"][index] = is_max_context |
|
|
|
for span in spans: |
|
|
|
cls_index = span["input_ids"].index(tokenizer.cls_token_id) |
|
|
|
|
|
|
|
p_mask = np.ones_like(span["token_type_ids"]) |
|
if tokenizer.padding_side == "right": |
|
p_mask[len(truncated_query) + sequence_added_tokens :] = 0 |
|
else: |
|
p_mask[-len(span["tokens"]) : -(len(truncated_query) + sequence_added_tokens)] = 0 |
|
|
|
pad_token_indices = np.where(span["input_ids"] == tokenizer.pad_token_id) |
|
special_token_indices = np.asarray( |
|
tokenizer.get_special_tokens_mask(span["input_ids"], already_has_special_tokens=True) |
|
).nonzero() |
|
|
|
p_mask[pad_token_indices] = 1 |
|
p_mask[special_token_indices] = 1 |
|
|
|
|
|
p_mask[cls_index] = 0 |
|
|
|
span_is_impossible = example.is_impossible |
|
start_position = 0 |
|
end_position = 0 |
|
if is_training and not span_is_impossible: |
|
|
|
|
|
doc_start = span["start"] |
|
doc_end = span["start"] + span["length"] - 1 |
|
out_of_span = False |
|
|
|
if not (tok_start_position >= doc_start and tok_end_position <= doc_end): |
|
out_of_span = True |
|
|
|
if out_of_span: |
|
start_position = cls_index |
|
end_position = cls_index |
|
span_is_impossible = True |
|
else: |
|
if tokenizer.padding_side == "left": |
|
doc_offset = 0 |
|
else: |
|
doc_offset = len(truncated_query) + sequence_added_tokens |
|
|
|
start_position = tok_start_position - doc_start + doc_offset |
|
end_position = tok_end_position - doc_start + doc_offset |
|
|
|
features.append( |
|
SquadFeatures( |
|
span["input_ids"], |
|
span["attention_mask"], |
|
span["token_type_ids"], |
|
cls_index, |
|
p_mask.tolist(), |
|
example_index=0, |
|
unique_id=0, |
|
paragraph_len=span["paragraph_len"], |
|
token_is_max_context=span["token_is_max_context"], |
|
tokens=span["tokens"], |
|
token_to_orig_map=span["token_to_orig_map"], |
|
start_position=start_position, |
|
end_position=end_position, |
|
is_impossible=span_is_impossible, |
|
qas_id=example.qas_id, |
|
) |
|
) |
|
return features |
|
|
|
|
|
def squad_convert_example_to_features_init(tokenizer_for_convert: PreTrainedTokenizerBase): |
|
global tokenizer |
|
tokenizer = tokenizer_for_convert |
|
|
|
|
|
def squad_convert_examples_to_features( |
|
examples, |
|
tokenizer, |
|
max_seq_length, |
|
doc_stride, |
|
max_query_length, |
|
is_training, |
|
padding_strategy="max_length", |
|
return_dataset=False, |
|
threads=1, |
|
tqdm_enabled=True, |
|
): |
|
""" |
|
Converts a list of examples into a list of features that can be directly given as input to a model. It is |
|
model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs. |
|
|
|
Args: |
|
examples: list of [`~data.processors.squad.SquadExample`] |
|
tokenizer: an instance of a child of [`PreTrainedTokenizer`] |
|
max_seq_length: The maximum sequence length of the inputs. |
|
doc_stride: The stride used when the context is too large and is split across several features. |
|
max_query_length: The maximum length of the query. |
|
is_training: whether to create features for model evaluation or model training. |
|
padding_strategy: Default to "max_length". Which padding strategy to use |
|
return_dataset: Default False. Either 'pt' or 'tf'. |
|
if 'pt': returns a torch.data.TensorDataset, if 'tf': returns a tf.data.Dataset |
|
threads: multiple processing threads. |
|
|
|
|
|
Returns: |
|
list of [`~data.processors.squad.SquadFeatures`] |
|
|
|
Example: |
|
|
|
```python |
|
processor = SquadV2Processor() |
|
examples = processor.get_dev_examples(data_dir) |
|
|
|
features = squad_convert_examples_to_features( |
|
examples=examples, |
|
tokenizer=tokenizer, |
|
max_seq_length=args.max_seq_length, |
|
doc_stride=args.doc_stride, |
|
max_query_length=args.max_query_length, |
|
is_training=not evaluate, |
|
) |
|
```""" |
|
|
|
features = [] |
|
|
|
threads = min(threads, cpu_count()) |
|
with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p: |
|
annotate_ = partial( |
|
squad_convert_example_to_features, |
|
max_seq_length=max_seq_length, |
|
doc_stride=doc_stride, |
|
max_query_length=max_query_length, |
|
padding_strategy=padding_strategy, |
|
is_training=is_training, |
|
) |
|
features = list( |
|
tqdm( |
|
p.imap(annotate_, examples, chunksize=32), |
|
total=len(examples), |
|
desc="convert squad examples to features", |
|
disable=not tqdm_enabled, |
|
) |
|
) |
|
|
|
new_features = [] |
|
unique_id = 1000000000 |
|
example_index = 0 |
|
for example_features in tqdm( |
|
features, total=len(features), desc="add example index and unique id", disable=not tqdm_enabled |
|
): |
|
if not example_features: |
|
continue |
|
for example_feature in example_features: |
|
example_feature.example_index = example_index |
|
example_feature.unique_id = unique_id |
|
new_features.append(example_feature) |
|
unique_id += 1 |
|
example_index += 1 |
|
features = new_features |
|
del new_features |
|
if return_dataset == "pt": |
|
if not is_torch_available(): |
|
raise RuntimeError("PyTorch must be installed to return a PyTorch dataset.") |
|
|
|
|
|
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) |
|
all_attention_masks = torch.tensor([f.attention_mask for f in features], dtype=torch.long) |
|
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) |
|
all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long) |
|
all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float) |
|
all_is_impossible = torch.tensor([f.is_impossible for f in features], dtype=torch.float) |
|
|
|
if not is_training: |
|
all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long) |
|
dataset = TensorDataset( |
|
all_input_ids, all_attention_masks, all_token_type_ids, all_feature_index, all_cls_index, all_p_mask |
|
) |
|
else: |
|
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long) |
|
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long) |
|
dataset = TensorDataset( |
|
all_input_ids, |
|
all_attention_masks, |
|
all_token_type_ids, |
|
all_start_positions, |
|
all_end_positions, |
|
all_cls_index, |
|
all_p_mask, |
|
all_is_impossible, |
|
) |
|
|
|
return features, dataset |
|
elif return_dataset == "tf": |
|
if not is_tf_available(): |
|
raise RuntimeError("TensorFlow must be installed to return a TensorFlow dataset.") |
|
|
|
def gen(): |
|
for i, ex in enumerate(features): |
|
if ex.token_type_ids is None: |
|
yield ( |
|
{ |
|
"input_ids": ex.input_ids, |
|
"attention_mask": ex.attention_mask, |
|
"feature_index": i, |
|
"qas_id": ex.qas_id, |
|
}, |
|
{ |
|
"start_positions": ex.start_position, |
|
"end_positions": ex.end_position, |
|
"cls_index": ex.cls_index, |
|
"p_mask": ex.p_mask, |
|
"is_impossible": ex.is_impossible, |
|
}, |
|
) |
|
else: |
|
yield ( |
|
{ |
|
"input_ids": ex.input_ids, |
|
"attention_mask": ex.attention_mask, |
|
"token_type_ids": ex.token_type_ids, |
|
"feature_index": i, |
|
"qas_id": ex.qas_id, |
|
}, |
|
{ |
|
"start_positions": ex.start_position, |
|
"end_positions": ex.end_position, |
|
"cls_index": ex.cls_index, |
|
"p_mask": ex.p_mask, |
|
"is_impossible": ex.is_impossible, |
|
}, |
|
) |
|
|
|
|
|
if "token_type_ids" in tokenizer.model_input_names: |
|
train_types = ( |
|
{ |
|
"input_ids": tf.int32, |
|
"attention_mask": tf.int32, |
|
"token_type_ids": tf.int32, |
|
"feature_index": tf.int64, |
|
"qas_id": tf.string, |
|
}, |
|
{ |
|
"start_positions": tf.int64, |
|
"end_positions": tf.int64, |
|
"cls_index": tf.int64, |
|
"p_mask": tf.int32, |
|
"is_impossible": tf.int32, |
|
}, |
|
) |
|
|
|
train_shapes = ( |
|
{ |
|
"input_ids": tf.TensorShape([None]), |
|
"attention_mask": tf.TensorShape([None]), |
|
"token_type_ids": tf.TensorShape([None]), |
|
"feature_index": tf.TensorShape([]), |
|
"qas_id": tf.TensorShape([]), |
|
}, |
|
{ |
|
"start_positions": tf.TensorShape([]), |
|
"end_positions": tf.TensorShape([]), |
|
"cls_index": tf.TensorShape([]), |
|
"p_mask": tf.TensorShape([None]), |
|
"is_impossible": tf.TensorShape([]), |
|
}, |
|
) |
|
else: |
|
train_types = ( |
|
{"input_ids": tf.int32, "attention_mask": tf.int32, "feature_index": tf.int64, "qas_id": tf.string}, |
|
{ |
|
"start_positions": tf.int64, |
|
"end_positions": tf.int64, |
|
"cls_index": tf.int64, |
|
"p_mask": tf.int32, |
|
"is_impossible": tf.int32, |
|
}, |
|
) |
|
|
|
train_shapes = ( |
|
{ |
|
"input_ids": tf.TensorShape([None]), |
|
"attention_mask": tf.TensorShape([None]), |
|
"feature_index": tf.TensorShape([]), |
|
"qas_id": tf.TensorShape([]), |
|
}, |
|
{ |
|
"start_positions": tf.TensorShape([]), |
|
"end_positions": tf.TensorShape([]), |
|
"cls_index": tf.TensorShape([]), |
|
"p_mask": tf.TensorShape([None]), |
|
"is_impossible": tf.TensorShape([]), |
|
}, |
|
) |
|
|
|
return tf.data.Dataset.from_generator(gen, train_types, train_shapes) |
|
else: |
|
return features |
|
|
|
|
|
class SquadProcessor(DataProcessor): |
|
""" |
|
Processor for the SQuAD data set. overridden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and |
|
version 2.0 of SQuAD, respectively. |
|
""" |
|
|
|
train_file = None |
|
dev_file = None |
|
|
|
def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False): |
|
if not evaluate: |
|
answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8") |
|
answer_start = tensor_dict["answers"]["answer_start"][0].numpy() |
|
answers = [] |
|
else: |
|
answers = [ |
|
{"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")} |
|
for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"]) |
|
] |
|
|
|
answer = None |
|
answer_start = None |
|
|
|
return SquadExample( |
|
qas_id=tensor_dict["id"].numpy().decode("utf-8"), |
|
question_text=tensor_dict["question"].numpy().decode("utf-8"), |
|
context_text=tensor_dict["context"].numpy().decode("utf-8"), |
|
answer_text=answer, |
|
start_position_character=answer_start, |
|
title=tensor_dict["title"].numpy().decode("utf-8"), |
|
answers=answers, |
|
) |
|
|
|
def get_examples_from_dataset(self, dataset, evaluate=False): |
|
""" |
|
Creates a list of [`~data.processors.squad.SquadExample`] using a TFDS dataset. |
|
|
|
Args: |
|
dataset: The tfds dataset loaded from *tensorflow_datasets.load("squad")* |
|
evaluate: Boolean specifying if in evaluation mode or in training mode |
|
|
|
Returns: |
|
List of SquadExample |
|
|
|
Examples: |
|
|
|
```python |
|
>>> import tensorflow_datasets as tfds |
|
|
|
>>> dataset = tfds.load("squad") |
|
|
|
>>> training_examples = get_examples_from_dataset(dataset, evaluate=False) |
|
>>> evaluation_examples = get_examples_from_dataset(dataset, evaluate=True) |
|
```""" |
|
|
|
if evaluate: |
|
dataset = dataset["validation"] |
|
else: |
|
dataset = dataset["train"] |
|
|
|
examples = [] |
|
for tensor_dict in tqdm(dataset): |
|
examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate)) |
|
|
|
return examples |
|
|
|
def get_train_examples(self, data_dir, filename=None): |
|
""" |
|
Returns the training examples from the data directory. |
|
|
|
Args: |
|
data_dir: Directory containing the data files used for training and evaluating. |
|
filename: None by default, specify this if the training file has a different name than the original one |
|
which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively. |
|
|
|
""" |
|
if data_dir is None: |
|
data_dir = "" |
|
|
|
if self.train_file is None: |
|
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") |
|
|
|
with open( |
|
os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8" |
|
) as reader: |
|
input_data = json.load(reader)["data"] |
|
return self._create_examples(input_data, "train") |
|
|
|
def get_dev_examples(self, data_dir, filename=None): |
|
""" |
|
Returns the evaluation example from the data directory. |
|
|
|
Args: |
|
data_dir: Directory containing the data files used for training and evaluating. |
|
filename: None by default, specify this if the evaluation file has a different name than the original one |
|
which is `dev-v1.1.json` and `dev-v2.0.json` for squad versions 1.1 and 2.0 respectively. |
|
""" |
|
if data_dir is None: |
|
data_dir = "" |
|
|
|
if self.dev_file is None: |
|
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") |
|
|
|
with open( |
|
os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8" |
|
) as reader: |
|
input_data = json.load(reader)["data"] |
|
return self._create_examples(input_data, "dev") |
|
|
|
def _create_examples(self, input_data, set_type): |
|
is_training = set_type == "train" |
|
examples = [] |
|
for entry in tqdm(input_data): |
|
title = entry["title"] |
|
for paragraph in entry["paragraphs"]: |
|
context_text = paragraph["context"] |
|
for qa in paragraph["qas"]: |
|
qas_id = qa["id"] |
|
question_text = qa["question"] |
|
start_position_character = None |
|
answer_text = None |
|
answers = [] |
|
|
|
is_impossible = qa.get("is_impossible", False) |
|
if not is_impossible: |
|
if is_training: |
|
answer = qa["answers"][0] |
|
answer_text = answer["text"] |
|
start_position_character = answer["answer_start"] |
|
else: |
|
answers = qa["answers"] |
|
|
|
example = SquadExample( |
|
qas_id=qas_id, |
|
question_text=question_text, |
|
context_text=context_text, |
|
answer_text=answer_text, |
|
start_position_character=start_position_character, |
|
title=title, |
|
is_impossible=is_impossible, |
|
answers=answers, |
|
) |
|
examples.append(example) |
|
return examples |
|
|
|
|
|
class SquadV1Processor(SquadProcessor): |
|
train_file = "train-v1.1.json" |
|
dev_file = "dev-v1.1.json" |
|
|
|
|
|
class SquadV2Processor(SquadProcessor): |
|
train_file = "train-v2.0.json" |
|
dev_file = "dev-v2.0.json" |
|
|
|
|
|
class SquadExample: |
|
""" |
|
A single training/test example for the Squad dataset, as loaded from disk. |
|
|
|
Args: |
|
qas_id: The example's unique identifier |
|
question_text: The question string |
|
context_text: The context string |
|
answer_text: The answer string |
|
start_position_character: The character position of the start of the answer |
|
title: The title of the example |
|
answers: None by default, this is used during evaluation. Holds answers as well as their start positions. |
|
is_impossible: False by default, set to True if the example has no possible answer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
qas_id, |
|
question_text, |
|
context_text, |
|
answer_text, |
|
start_position_character, |
|
title, |
|
answers=[], |
|
is_impossible=False, |
|
): |
|
self.qas_id = qas_id |
|
self.question_text = question_text |
|
self.context_text = context_text |
|
self.answer_text = answer_text |
|
self.title = title |
|
self.is_impossible = is_impossible |
|
self.answers = answers |
|
|
|
self.start_position, self.end_position = 0, 0 |
|
|
|
doc_tokens = [] |
|
char_to_word_offset = [] |
|
prev_is_whitespace = True |
|
|
|
|
|
for c in self.context_text: |
|
if _is_whitespace(c): |
|
prev_is_whitespace = True |
|
else: |
|
if prev_is_whitespace: |
|
doc_tokens.append(c) |
|
else: |
|
doc_tokens[-1] += c |
|
prev_is_whitespace = False |
|
char_to_word_offset.append(len(doc_tokens) - 1) |
|
|
|
self.doc_tokens = doc_tokens |
|
self.char_to_word_offset = char_to_word_offset |
|
|
|
|
|
if start_position_character is not None and not is_impossible: |
|
self.start_position = char_to_word_offset[start_position_character] |
|
self.end_position = char_to_word_offset[ |
|
min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1) |
|
] |
|
|
|
|
|
class SquadFeatures: |
|
""" |
|
Single squad example features to be fed to a model. Those features are model-specific and can be crafted from |
|
[`~data.processors.squad.SquadExample`] using the |
|
:method:*~transformers.data.processors.squad.squad_convert_examples_to_features* method. |
|
|
|
Args: |
|
input_ids: Indices of input sequence tokens in the vocabulary. |
|
attention_mask: Mask to avoid performing attention on padding token indices. |
|
token_type_ids: Segment token indices to indicate first and second portions of the inputs. |
|
cls_index: the index of the CLS token. |
|
p_mask: Mask identifying tokens that can be answers vs. tokens that cannot. |
|
Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer |
|
example_index: the index of the example |
|
unique_id: The unique Feature identifier |
|
paragraph_len: The length of the context |
|
token_is_max_context: |
|
List of booleans identifying which tokens have their maximum context in this feature object. If a token |
|
does not have their maximum context in this feature object, it means that another feature object has more |
|
information related to that token and should be prioritized over this feature for that token. |
|
tokens: list of tokens corresponding to the input ids |
|
token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer. |
|
start_position: start of the answer token index |
|
end_position: end of the answer token index |
|
encoding: optionally store the BatchEncoding with the fast-tokenizer alignment methods. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
cls_index, |
|
p_mask, |
|
example_index, |
|
unique_id, |
|
paragraph_len, |
|
token_is_max_context, |
|
tokens, |
|
token_to_orig_map, |
|
start_position, |
|
end_position, |
|
is_impossible, |
|
qas_id: str = None, |
|
encoding: BatchEncoding = None, |
|
): |
|
self.input_ids = input_ids |
|
self.attention_mask = attention_mask |
|
self.token_type_ids = token_type_ids |
|
self.cls_index = cls_index |
|
self.p_mask = p_mask |
|
|
|
self.example_index = example_index |
|
self.unique_id = unique_id |
|
self.paragraph_len = paragraph_len |
|
self.token_is_max_context = token_is_max_context |
|
self.tokens = tokens |
|
self.token_to_orig_map = token_to_orig_map |
|
|
|
self.start_position = start_position |
|
self.end_position = end_position |
|
self.is_impossible = is_impossible |
|
self.qas_id = qas_id |
|
|
|
self.encoding = encoding |
|
|
|
|
|
class SquadResult: |
|
""" |
|
Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset. |
|
|
|
Args: |
|
unique_id: The unique identifier corresponding to that example. |
|
start_logits: The logits corresponding to the start of the answer |
|
end_logits: The logits corresponding to the end of the answer |
|
""" |
|
|
|
def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None): |
|
self.start_logits = start_logits |
|
self.end_logits = end_logits |
|
self.unique_id = unique_id |
|
|
|
if start_top_index: |
|
self.start_top_index = start_top_index |
|
self.end_top_index = end_top_index |
|
self.cls_logits = cls_logits |
|
|