|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" GLUE processors and helpers""" |
|
|
|
import os |
|
import warnings |
|
from dataclasses import asdict |
|
from enum import Enum |
|
from typing import List, Optional, Union |
|
|
|
from ...tokenization_utils import PreTrainedTokenizer |
|
from ...utils import is_tf_available, logging |
|
from .utils import DataProcessor, InputExample, InputFeatures |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
DEPRECATION_WARNING = ( |
|
"This {0} will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " |
|
"library. You can have a look at this example script for pointers: " |
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" |
|
) |
|
|
|
|
|
def glue_convert_examples_to_features( |
|
examples: Union[List[InputExample], "tf.data.Dataset"], |
|
tokenizer: PreTrainedTokenizer, |
|
max_length: Optional[int] = None, |
|
task=None, |
|
label_list=None, |
|
output_mode=None, |
|
): |
|
""" |
|
Loads a data file into a list of `InputFeatures` |
|
|
|
Args: |
|
examples: List of `InputExamples` or `tf.data.Dataset` containing the examples. |
|
tokenizer: Instance of a tokenizer that will tokenize the examples |
|
max_length: Maximum example length. Defaults to the tokenizer's max_len |
|
task: GLUE task |
|
label_list: List of labels. Can be obtained from the processor using the `processor.get_labels()` method |
|
output_mode: String indicating the output mode. Either `regression` or `classification` |
|
|
|
Returns: |
|
If the `examples` input is a `tf.data.Dataset`, will return a `tf.data.Dataset` containing the task-specific |
|
features. If the input is a list of `InputExamples`, will return a list of task-specific `InputFeatures` which |
|
can be fed to the model. |
|
|
|
""" |
|
warnings.warn(DEPRECATION_WARNING.format("function"), FutureWarning) |
|
if is_tf_available() and isinstance(examples, tf.data.Dataset): |
|
if task is None: |
|
raise ValueError("When calling glue_convert_examples_to_features from TF, the task parameter is required.") |
|
return _tf_glue_convert_examples_to_features(examples, tokenizer, max_length=max_length, task=task) |
|
return _glue_convert_examples_to_features( |
|
examples, tokenizer, max_length=max_length, task=task, label_list=label_list, output_mode=output_mode |
|
) |
|
|
|
|
|
if is_tf_available(): |
|
|
|
def _tf_glue_convert_examples_to_features( |
|
examples: tf.data.Dataset, |
|
tokenizer: PreTrainedTokenizer, |
|
task=str, |
|
max_length: Optional[int] = None, |
|
) -> tf.data.Dataset: |
|
""" |
|
Returns: |
|
A `tf.data.Dataset` containing the task-specific features. |
|
|
|
""" |
|
processor = glue_processors[task]() |
|
examples = [processor.tfds_map(processor.get_example_from_tensor_dict(example)) for example in examples] |
|
features = glue_convert_examples_to_features(examples, tokenizer, max_length=max_length, task=task) |
|
label_type = tf.float32 if task == "sts-b" else tf.int64 |
|
|
|
def gen(): |
|
for ex in features: |
|
d = {k: v for k, v in asdict(ex).items() if v is not None} |
|
label = d.pop("label") |
|
yield (d, label) |
|
|
|
input_names = tokenizer.model_input_names |
|
|
|
return tf.data.Dataset.from_generator( |
|
gen, |
|
({k: tf.int32 for k in input_names}, label_type), |
|
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])), |
|
) |
|
|
|
|
|
def _glue_convert_examples_to_features( |
|
examples: List[InputExample], |
|
tokenizer: PreTrainedTokenizer, |
|
max_length: Optional[int] = None, |
|
task=None, |
|
label_list=None, |
|
output_mode=None, |
|
): |
|
if max_length is None: |
|
max_length = tokenizer.model_max_length |
|
|
|
if task is not None: |
|
processor = glue_processors[task]() |
|
if label_list is None: |
|
label_list = processor.get_labels() |
|
logger.info(f"Using label list {label_list} for task {task}") |
|
if output_mode is None: |
|
output_mode = glue_output_modes[task] |
|
logger.info(f"Using output mode {output_mode} for task {task}") |
|
|
|
label_map = {label: i for i, label in enumerate(label_list)} |
|
|
|
def label_from_example(example: InputExample) -> Union[int, float, None]: |
|
if example.label is None: |
|
return None |
|
if output_mode == "classification": |
|
return label_map[example.label] |
|
elif output_mode == "regression": |
|
return float(example.label) |
|
raise KeyError(output_mode) |
|
|
|
labels = [label_from_example(example) for example in examples] |
|
|
|
batch_encoding = tokenizer( |
|
[(example.text_a, example.text_b) for example in examples], |
|
max_length=max_length, |
|
padding="max_length", |
|
truncation=True, |
|
) |
|
|
|
features = [] |
|
for i in range(len(examples)): |
|
inputs = {k: batch_encoding[k][i] for k in batch_encoding} |
|
|
|
feature = InputFeatures(**inputs, label=labels[i]) |
|
features.append(feature) |
|
|
|
for i, example in enumerate(examples[:5]): |
|
logger.info("*** Example ***") |
|
logger.info(f"guid: {example.guid}") |
|
logger.info(f"features: {features[i]}") |
|
|
|
return features |
|
|
|
|
|
class OutputMode(Enum): |
|
classification = "classification" |
|
regression = "regression" |
|
|
|
|
|
class MrpcProcessor(DataProcessor): |
|
"""Processor for the MRPC data set (GLUE version).""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample( |
|
tensor_dict["idx"].numpy(), |
|
tensor_dict["sentence1"].numpy().decode("utf-8"), |
|
tensor_dict["sentence2"].numpy().decode("utf-8"), |
|
str(tensor_dict["label"].numpy()), |
|
) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info(f"LOOKING AT {os.path.join(data_dir, 'train.tsv')}") |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training, dev and test sets.""" |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = f"{set_type}-{i}" |
|
text_a = line[3] |
|
text_b = line[4] |
|
label = None if set_type == "test" else line[0] |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class MnliProcessor(DataProcessor): |
|
"""Processor for the MultiNLI data set (GLUE version).""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample( |
|
tensor_dict["idx"].numpy(), |
|
tensor_dict["premise"].numpy().decode("utf-8"), |
|
tensor_dict["hypothesis"].numpy().decode("utf-8"), |
|
str(tensor_dict["label"].numpy()), |
|
) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test_matched") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["contradiction", "entailment", "neutral"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training, dev and test sets.""" |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = f"{set_type}-{line[0]}" |
|
text_a = line[8] |
|
text_b = line[9] |
|
label = None if set_type.startswith("test") else line[-1] |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class MnliMismatchedProcessor(MnliProcessor): |
|
"""Processor for the MultiNLI Mismatched data set (GLUE version).""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_mismatched") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test_mismatched") |
|
|
|
|
|
class ColaProcessor(DataProcessor): |
|
"""Processor for the CoLA data set (GLUE version).""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample( |
|
tensor_dict["idx"].numpy(), |
|
tensor_dict["sentence"].numpy().decode("utf-8"), |
|
None, |
|
str(tensor_dict["label"].numpy()), |
|
) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training, dev and test sets.""" |
|
test_mode = set_type == "test" |
|
if test_mode: |
|
lines = lines[1:] |
|
text_index = 1 if test_mode else 3 |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
guid = f"{set_type}-{i}" |
|
text_a = line[text_index] |
|
label = None if test_mode else line[1] |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) |
|
return examples |
|
|
|
|
|
class Sst2Processor(DataProcessor): |
|
"""Processor for the SST-2 data set (GLUE version).""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample( |
|
tensor_dict["idx"].numpy(), |
|
tensor_dict["sentence"].numpy().decode("utf-8"), |
|
None, |
|
str(tensor_dict["label"].numpy()), |
|
) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training, dev and test sets.""" |
|
examples = [] |
|
text_index = 1 if set_type == "test" else 0 |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = f"{set_type}-{i}" |
|
text_a = line[text_index] |
|
label = None if set_type == "test" else line[1] |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) |
|
return examples |
|
|
|
|
|
class StsbProcessor(DataProcessor): |
|
"""Processor for the STS-B data set (GLUE version).""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample( |
|
tensor_dict["idx"].numpy(), |
|
tensor_dict["sentence1"].numpy().decode("utf-8"), |
|
tensor_dict["sentence2"].numpy().decode("utf-8"), |
|
str(tensor_dict["label"].numpy()), |
|
) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return [None] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training, dev and test sets.""" |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = f"{set_type}-{line[0]}" |
|
text_a = line[7] |
|
text_b = line[8] |
|
label = None if set_type == "test" else line[-1] |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class QqpProcessor(DataProcessor): |
|
"""Processor for the QQP data set (GLUE version).""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample( |
|
tensor_dict["idx"].numpy(), |
|
tensor_dict["question1"].numpy().decode("utf-8"), |
|
tensor_dict["question2"].numpy().decode("utf-8"), |
|
str(tensor_dict["label"].numpy()), |
|
) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training, dev and test sets.""" |
|
test_mode = set_type == "test" |
|
q1_index = 1 if test_mode else 3 |
|
q2_index = 2 if test_mode else 4 |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = f"{set_type}-{line[0]}" |
|
try: |
|
text_a = line[q1_index] |
|
text_b = line[q2_index] |
|
label = None if test_mode else line[5] |
|
except IndexError: |
|
continue |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class QnliProcessor(DataProcessor): |
|
"""Processor for the QNLI data set (GLUE version).""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample( |
|
tensor_dict["idx"].numpy(), |
|
tensor_dict["question"].numpy().decode("utf-8"), |
|
tensor_dict["sentence"].numpy().decode("utf-8"), |
|
str(tensor_dict["label"].numpy()), |
|
) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["entailment", "not_entailment"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training, dev and test sets.""" |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = f"{set_type}-{line[0]}" |
|
text_a = line[1] |
|
text_b = line[2] |
|
label = None if set_type == "test" else line[-1] |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class RteProcessor(DataProcessor): |
|
"""Processor for the RTE data set (GLUE version).""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample( |
|
tensor_dict["idx"].numpy(), |
|
tensor_dict["sentence1"].numpy().decode("utf-8"), |
|
tensor_dict["sentence2"].numpy().decode("utf-8"), |
|
str(tensor_dict["label"].numpy()), |
|
) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["entailment", "not_entailment"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training, dev and test sets.""" |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = f"{set_type}-{line[0]}" |
|
text_a = line[1] |
|
text_b = line[2] |
|
label = None if set_type == "test" else line[-1] |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
class WnliProcessor(DataProcessor): |
|
"""Processor for the WNLI data set (GLUE version).""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning) |
|
|
|
def get_example_from_tensor_dict(self, tensor_dict): |
|
"""See base class.""" |
|
return InputExample( |
|
tensor_dict["idx"].numpy(), |
|
tensor_dict["sentence1"].numpy().decode("utf-8"), |
|
tensor_dict["sentence2"].numpy().decode("utf-8"), |
|
str(tensor_dict["label"].numpy()), |
|
) |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training, dev and test sets.""" |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = f"{set_type}-{line[0]}" |
|
text_a = line[1] |
|
text_b = line[2] |
|
label = None if set_type == "test" else line[-1] |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) |
|
return examples |
|
|
|
|
|
glue_tasks_num_labels = { |
|
"cola": 2, |
|
"mnli": 3, |
|
"mrpc": 2, |
|
"sst-2": 2, |
|
"sts-b": 1, |
|
"qqp": 2, |
|
"qnli": 2, |
|
"rte": 2, |
|
"wnli": 2, |
|
} |
|
|
|
glue_processors = { |
|
"cola": ColaProcessor, |
|
"mnli": MnliProcessor, |
|
"mnli-mm": MnliMismatchedProcessor, |
|
"mrpc": MrpcProcessor, |
|
"sst-2": Sst2Processor, |
|
"sts-b": StsbProcessor, |
|
"qqp": QqpProcessor, |
|
"qnli": QnliProcessor, |
|
"rte": RteProcessor, |
|
"wnli": WnliProcessor, |
|
} |
|
|
|
glue_output_modes = { |
|
"cola": "classification", |
|
"mnli": "classification", |
|
"mnli-mm": "classification", |
|
"mrpc": "classification", |
|
"sst-2": "classification", |
|
"sts-b": "regression", |
|
"qqp": "classification", |
|
"qnli": "classification", |
|
"rte": "classification", |
|
"wnli": "classification", |
|
} |
|
|