|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Utilities to convert slow tokenizers in their fast tokenizers counterparts. |
|
|
|
All the conversions are grouped here to gather SentencePiece dependencies outside of the fast tokenizers files and |
|
allow to make our dependency on SentencePiece optional. |
|
""" |
|
|
|
import warnings |
|
from typing import Dict, List, Tuple |
|
|
|
from packaging import version |
|
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors |
|
from tokenizers.models import BPE, Unigram, WordPiece |
|
|
|
from .utils import is_protobuf_available, requires_backends |
|
from .utils.import_utils import PROTOBUF_IMPORT_ERROR |
|
|
|
|
|
def import_protobuf(error_message=""): |
|
if is_protobuf_available(): |
|
import google.protobuf |
|
|
|
if version.parse(google.protobuf.__version__) < version.parse("4.0.0"): |
|
from transformers.utils import sentencepiece_model_pb2 |
|
else: |
|
from transformers.utils import sentencepiece_model_pb2_new as sentencepiece_model_pb2 |
|
return sentencepiece_model_pb2 |
|
else: |
|
raise ImportError(PROTOBUF_IMPORT_ERROR.format(error_message)) |
|
|
|
|
|
class SentencePieceExtractor: |
|
""" |
|
Extractor implementation for SentencePiece trained models. https://github.com/google/sentencepiece |
|
""" |
|
|
|
def __init__(self, model: str): |
|
requires_backends(self, "sentencepiece") |
|
from sentencepiece import SentencePieceProcessor |
|
|
|
self.sp = SentencePieceProcessor() |
|
self.sp.Load(model) |
|
|
|
def extract(self, vocab_scores=None) -> Tuple[Dict[str, int], List[Tuple]]: |
|
""" |
|
By default will return vocab and merges with respect to their order, by sending `vocab_scores` we're going to |
|
order the merges with respect to the piece scores instead. |
|
""" |
|
sp = self.sp |
|
vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())} |
|
if vocab_scores is not None: |
|
vocab_scores, reverse = dict(vocab_scores), True |
|
else: |
|
vocab_scores, reverse = vocab, False |
|
|
|
|
|
merges = [] |
|
for merge, piece_score in vocab_scores.items(): |
|
local = [] |
|
for index in range(1, len(merge)): |
|
piece_l, piece_r = merge[:index], merge[index:] |
|
if piece_l in vocab and piece_r in vocab: |
|
local.append((piece_l, piece_r, piece_score)) |
|
local = sorted(local, key=lambda x: (vocab[x[0]], vocab[x[1]])) |
|
merges.extend(local) |
|
|
|
merges = sorted(merges, key=lambda val: val[2], reverse=reverse) |
|
merges = [(val[0], val[1]) for val in merges] |
|
return vocab, merges |
|
|
|
|
|
def check_number_comma(piece: str) -> bool: |
|
return len(piece) < 2 or piece[-1] != "," or not piece[-2].isdigit() |
|
|
|
|
|
class Converter: |
|
def __init__(self, original_tokenizer): |
|
self.original_tokenizer = original_tokenizer |
|
|
|
def converted(self) -> Tokenizer: |
|
raise NotImplementedError() |
|
|
|
|
|
class BertConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
vocab = self.original_tokenizer.vocab |
|
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token))) |
|
|
|
tokenize_chinese_chars = False |
|
strip_accents = False |
|
do_lower_case = False |
|
if hasattr(self.original_tokenizer, "basic_tokenizer"): |
|
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars |
|
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents |
|
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case |
|
|
|
tokenizer.normalizer = normalizers.BertNormalizer( |
|
clean_text=True, |
|
handle_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
lowercase=do_lower_case, |
|
) |
|
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() |
|
|
|
cls = str(self.original_tokenizer.cls_token) |
|
sep = str(self.original_tokenizer.sep_token) |
|
cls_token_id = self.original_tokenizer.cls_token_id |
|
sep_token_id = self.original_tokenizer.sep_token_id |
|
|
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single=f"{cls}:0 $A:0 {sep}:0", |
|
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1", |
|
special_tokens=[ |
|
(cls, cls_token_id), |
|
(sep, sep_token_id), |
|
], |
|
) |
|
tokenizer.decoder = decoders.WordPiece(prefix="##") |
|
|
|
return tokenizer |
|
|
|
|
|
class SplinterConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
vocab = self.original_tokenizer.vocab |
|
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token))) |
|
|
|
tokenize_chinese_chars = False |
|
strip_accents = False |
|
do_lower_case = False |
|
if hasattr(self.original_tokenizer, "basic_tokenizer"): |
|
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars |
|
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents |
|
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case |
|
|
|
tokenizer.normalizer = normalizers.BertNormalizer( |
|
clean_text=True, |
|
handle_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
lowercase=do_lower_case, |
|
) |
|
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() |
|
|
|
cls = str(self.original_tokenizer.cls_token) |
|
sep = str(self.original_tokenizer.sep_token) |
|
question = str(self.original_tokenizer.question_token) |
|
dot = "." |
|
cls_token_id = self.original_tokenizer.cls_token_id |
|
sep_token_id = self.original_tokenizer.sep_token_id |
|
question_token_id = self.original_tokenizer.question_token_id |
|
dot_token_id = self.original_tokenizer.convert_tokens_to_ids(".") |
|
|
|
if self.original_tokenizer.padding_side == "right": |
|
pair = f"{cls}:0 $A:0 {question} {dot} {sep}:0 $B:1 {sep}:1" |
|
else: |
|
pair = f"{cls}:0 $A:0 {sep}:0 $B:1 {question} {dot} {sep}:1" |
|
|
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single=f"{cls}:0 $A:0 {sep}:0", |
|
pair=pair, |
|
special_tokens=[ |
|
(cls, cls_token_id), |
|
(sep, sep_token_id), |
|
(question, question_token_id), |
|
(dot, dot_token_id), |
|
], |
|
) |
|
tokenizer.decoder = decoders.WordPiece(prefix="##") |
|
|
|
return tokenizer |
|
|
|
|
|
class FunnelConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
vocab = self.original_tokenizer.vocab |
|
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token))) |
|
|
|
tokenize_chinese_chars = False |
|
strip_accents = False |
|
do_lower_case = False |
|
if hasattr(self.original_tokenizer, "basic_tokenizer"): |
|
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars |
|
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents |
|
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case |
|
|
|
tokenizer.normalizer = normalizers.BertNormalizer( |
|
clean_text=True, |
|
handle_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
lowercase=do_lower_case, |
|
) |
|
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() |
|
|
|
cls = str(self.original_tokenizer.cls_token) |
|
sep = str(self.original_tokenizer.sep_token) |
|
cls_token_id = self.original_tokenizer.cls_token_id |
|
sep_token_id = self.original_tokenizer.sep_token_id |
|
|
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single=f"{cls}:2 $A:0 {sep}:0", |
|
pair=f"{cls}:2 $A:0 {sep}:0 $B:1 {sep}:1", |
|
special_tokens=[ |
|
(cls, cls_token_id), |
|
(sep, sep_token_id), |
|
], |
|
) |
|
tokenizer.decoder = decoders.WordPiece(prefix="##") |
|
|
|
return tokenizer |
|
|
|
|
|
class MPNetConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
vocab = self.original_tokenizer.vocab |
|
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token))) |
|
|
|
tokenize_chinese_chars = False |
|
strip_accents = False |
|
do_lower_case = False |
|
if hasattr(self.original_tokenizer, "basic_tokenizer"): |
|
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars |
|
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents |
|
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case |
|
|
|
tokenizer.normalizer = normalizers.BertNormalizer( |
|
clean_text=True, |
|
handle_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
lowercase=do_lower_case, |
|
) |
|
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() |
|
|
|
cls = str(self.original_tokenizer.cls_token) |
|
sep = str(self.original_tokenizer.sep_token) |
|
cls_token_id = self.original_tokenizer.cls_token_id |
|
sep_token_id = self.original_tokenizer.sep_token_id |
|
|
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single=f"{cls}:0 $A:0 {sep}:0", |
|
pair=f"{cls}:0 $A:0 {sep}:0 {sep}:0 $B:1 {sep}:1", |
|
special_tokens=[ |
|
(cls, cls_token_id), |
|
(sep, sep_token_id), |
|
], |
|
) |
|
tokenizer.decoder = decoders.WordPiece(prefix="##") |
|
|
|
return tokenizer |
|
|
|
|
|
class OpenAIGPTConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
vocab = self.original_tokenizer.encoder |
|
merges = list(self.original_tokenizer.bpe_ranks.keys()) |
|
unk_token = self.original_tokenizer.unk_token |
|
|
|
tokenizer = Tokenizer( |
|
BPE( |
|
vocab=vocab, |
|
merges=merges, |
|
dropout=None, |
|
unk_token=str(unk_token), |
|
end_of_word_suffix="</w>", |
|
fuse_unk=False, |
|
) |
|
) |
|
|
|
if tokenizer.token_to_id(str(unk_token)) is not None: |
|
tokenizer.add_special_tokens([str(unk_token)]) |
|
|
|
tokenizer.normalizer = normalizers.BertNormalizer(lowercase=True) |
|
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() |
|
tokenizer.decoder = decoders.BPEDecoder(suffix="</w>") |
|
|
|
return tokenizer |
|
|
|
|
|
class GPT2Converter(Converter): |
|
def converted(self) -> Tokenizer: |
|
vocab = self.original_tokenizer.encoder |
|
merges = list(self.original_tokenizer.bpe_ranks.keys()) |
|
|
|
tokenizer = Tokenizer( |
|
BPE( |
|
vocab=vocab, |
|
merges=merges, |
|
dropout=None, |
|
continuing_subword_prefix="", |
|
end_of_word_suffix="", |
|
fuse_unk=False, |
|
) |
|
) |
|
|
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space) |
|
tokenizer.decoder = decoders.ByteLevel() |
|
if self.original_tokenizer.add_bos_token: |
|
bos = self.original_tokenizer.bos_token |
|
bos_token_id = self.original_tokenizer.bos_token_id |
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single=f"{bos}:0 $A:0", |
|
pair=f"{bos}:0 $A:0 $B:1", |
|
special_tokens=[ |
|
(bos, bos_token_id), |
|
], |
|
) |
|
else: |
|
|
|
|
|
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False) |
|
return tokenizer |
|
|
|
|
|
class HerbertConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
tokenizer_info_str = "#version:" |
|
token_suffix = "</w>" |
|
|
|
vocab = self.original_tokenizer.encoder |
|
merges = list(self.original_tokenizer.bpe_ranks.keys()) |
|
if tokenizer_info_str in merges[0][0]: |
|
merges = merges[1:] |
|
|
|
tokenizer = Tokenizer( |
|
BPE( |
|
vocab, |
|
merges, |
|
dropout=None, |
|
unk_token=self.original_tokenizer.unk_token, |
|
end_of_word_suffix=token_suffix, |
|
) |
|
) |
|
|
|
tokenizer.normalizer = normalizers.BertNormalizer(lowercase=False, strip_accents=False) |
|
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() |
|
tokenizer.decoder = decoders.BPEDecoder(suffix=token_suffix) |
|
tokenizer.post_processor = processors.BertProcessing( |
|
sep=(self.original_tokenizer.sep_token, self.original_tokenizer.sep_token_id), |
|
cls=(self.original_tokenizer.cls_token, self.original_tokenizer.cls_token_id), |
|
) |
|
|
|
return tokenizer |
|
|
|
|
|
class RobertaConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
ot = self.original_tokenizer |
|
vocab = ot.encoder |
|
merges = list(ot.bpe_ranks.keys()) |
|
|
|
tokenizer = Tokenizer( |
|
BPE( |
|
vocab=vocab, |
|
merges=merges, |
|
dropout=None, |
|
continuing_subword_prefix="", |
|
end_of_word_suffix="", |
|
fuse_unk=False, |
|
) |
|
) |
|
|
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space) |
|
tokenizer.decoder = decoders.ByteLevel() |
|
tokenizer.post_processor = processors.RobertaProcessing( |
|
sep=(ot.sep_token, ot.sep_token_id), |
|
cls=(ot.cls_token, ot.cls_token_id), |
|
add_prefix_space=ot.add_prefix_space, |
|
trim_offsets=True, |
|
) |
|
|
|
return tokenizer |
|
|
|
|
|
class RoFormerConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
from .models.roformer.tokenization_utils import JiebaPreTokenizer |
|
|
|
vocab = self.original_tokenizer.vocab |
|
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token))) |
|
|
|
strip_accents = False |
|
do_lower_case = False |
|
if hasattr(self.original_tokenizer, "basic_tokenizer"): |
|
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents |
|
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case |
|
|
|
tokenizer.normalizer = normalizers.BertNormalizer( |
|
clean_text=True, |
|
handle_chinese_chars=False, |
|
strip_accents=strip_accents, |
|
lowercase=do_lower_case, |
|
) |
|
tokenizer.pre_tokenizer = pre_tokenizers.PreTokenizer.custom(JiebaPreTokenizer(vocab)) |
|
|
|
cls = str(self.original_tokenizer.cls_token) |
|
sep = str(self.original_tokenizer.sep_token) |
|
cls_token_id = self.original_tokenizer.cls_token_id |
|
sep_token_id = self.original_tokenizer.sep_token_id |
|
|
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single=f"{cls}:0 $A:0 {sep}:0", |
|
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1", |
|
special_tokens=[ |
|
(cls, cls_token_id), |
|
(sep, sep_token_id), |
|
], |
|
) |
|
tokenizer.decoder = decoders.WordPiece(prefix="##") |
|
|
|
return tokenizer |
|
|
|
|
|
class DebertaConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
ot = self.original_tokenizer |
|
vocab = ot.encoder |
|
merges = list(ot.bpe_ranks.keys()) |
|
|
|
tokenizer = Tokenizer( |
|
BPE( |
|
vocab=vocab, |
|
merges=merges, |
|
dropout=None, |
|
continuing_subword_prefix="", |
|
end_of_word_suffix="", |
|
fuse_unk=False, |
|
) |
|
) |
|
|
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space) |
|
tokenizer.decoder = decoders.ByteLevel() |
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single="[CLS]:0 $A:0 [SEP]:0", |
|
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1", |
|
special_tokens=[ |
|
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")), |
|
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")), |
|
], |
|
) |
|
|
|
return tokenizer |
|
|
|
|
|
class SpmConverter(Converter): |
|
def __init__(self, *args): |
|
requires_backends(self, "protobuf") |
|
|
|
super().__init__(*args) |
|
|
|
|
|
model_pb2 = import_protobuf() |
|
|
|
m = model_pb2.ModelProto() |
|
with open(self.original_tokenizer.vocab_file, "rb") as f: |
|
m.ParseFromString(f.read()) |
|
self.proto = m |
|
|
|
if self.proto.trainer_spec.byte_fallback: |
|
if not getattr(self, "handle_byte_fallback", None): |
|
warnings.warn( |
|
"The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option" |
|
" which is not implemented in the fast tokenizers. In practice this means that the fast version of the" |
|
" tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these " |
|
"unknown tokens into a sequence of byte tokens matching the original piece of text." |
|
) |
|
|
|
def vocab(self, proto): |
|
return [(piece.piece, piece.score) for piece in proto.pieces] |
|
|
|
def unk_id(self, proto): |
|
return proto.trainer_spec.unk_id |
|
|
|
def tokenizer(self, proto): |
|
model_type = proto.trainer_spec.model_type |
|
vocab_scores = self.vocab(proto) |
|
unk_id = self.unk_id(proto) |
|
|
|
if model_type == 1: |
|
tokenizer = Tokenizer(Unigram(vocab_scores, unk_id)) |
|
elif model_type == 2: |
|
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract() |
|
bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)} |
|
tokenizer = Tokenizer( |
|
BPE( |
|
bpe_vocab, |
|
merges, |
|
unk_token=proto.trainer_spec.unk_piece, |
|
fuse_unk=True, |
|
) |
|
) |
|
else: |
|
raise Exception( |
|
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm" |
|
) |
|
|
|
return tokenizer |
|
|
|
def normalizer(self, proto): |
|
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap |
|
if not precompiled_charsmap: |
|
return normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")]) |
|
else: |
|
return normalizers.Sequence( |
|
[normalizers.Precompiled(precompiled_charsmap), normalizers.Replace(Regex(" {2,}"), " ")] |
|
) |
|
|
|
def pre_tokenizer(self, replacement, add_prefix_space): |
|
return pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) |
|
|
|
def post_processor(self): |
|
return None |
|
|
|
def decoder(self, replacement, add_prefix_space): |
|
return decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) |
|
|
|
def converted(self) -> Tokenizer: |
|
tokenizer = self.tokenizer(self.proto) |
|
|
|
|
|
normalizer = self.normalizer(self.proto) |
|
if normalizer is not None: |
|
tokenizer.normalizer = normalizer |
|
|
|
replacement = "▁" |
|
add_prefix_space = True |
|
pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space) |
|
if pre_tokenizer is not None: |
|
tokenizer.pre_tokenizer = pre_tokenizer |
|
|
|
tokenizer.decoder = self.decoder(replacement, add_prefix_space) |
|
post_processor = self.post_processor() |
|
if post_processor: |
|
tokenizer.post_processor = post_processor |
|
|
|
return tokenizer |
|
|
|
|
|
class AlbertConverter(SpmConverter): |
|
def vocab(self, proto): |
|
return [ |
|
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100) |
|
for piece in proto.pieces |
|
] |
|
|
|
def normalizer(self, proto): |
|
list_normalizers = [ |
|
normalizers.Replace("``", '"'), |
|
normalizers.Replace("''", '"'), |
|
] |
|
if not self.original_tokenizer.keep_accents: |
|
list_normalizers.append(normalizers.NFKD()) |
|
list_normalizers.append(normalizers.StripAccents()) |
|
if self.original_tokenizer.do_lower_case: |
|
list_normalizers.append(normalizers.Lowercase()) |
|
|
|
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap |
|
|
|
if precompiled_charsmap: |
|
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap)) |
|
|
|
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " ")) |
|
return normalizers.Sequence(list_normalizers) |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="[CLS]:0 $A:0 [SEP]:0", |
|
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1", |
|
special_tokens=[ |
|
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")), |
|
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")), |
|
], |
|
) |
|
|
|
|
|
class BarthezConverter(SpmConverter): |
|
def unk_id(self, proto): |
|
unk_id = 3 |
|
return unk_id |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="<s> $A </s>", |
|
pair="<s> $A </s> </s> $B </s>", |
|
special_tokens=[ |
|
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")), |
|
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), |
|
], |
|
) |
|
|
|
|
|
class CamembertConverter(SpmConverter): |
|
def vocab(self, proto): |
|
vocab = [ |
|
("<s>NOTUSED", 0.0), |
|
("<pad>", 0.0), |
|
("</s>NOTUSED", 0.0), |
|
("<unk>", 0.0), |
|
("<unk>NOTUSED", -100), |
|
] |
|
|
|
vocab += [(piece.piece, piece.score) for piece in proto.pieces[1:]] |
|
vocab += [("<mask>", 0.0)] |
|
return vocab |
|
|
|
def unk_id(self, proto): |
|
|
|
return 3 |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="<s> $A </s>", |
|
pair="<s> $A </s> </s> $B </s>", |
|
special_tokens=[ |
|
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")), |
|
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), |
|
], |
|
) |
|
|
|
|
|
class DebertaV2Converter(SpmConverter): |
|
def pre_tokenizer(self, replacement, add_prefix_space): |
|
list_pretokenizers = [] |
|
if self.original_tokenizer.split_by_punct: |
|
list_pretokenizers.append(pre_tokenizers.Punctuation(behavior="isolated")) |
|
list_pretokenizers.append(pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)) |
|
return pre_tokenizers.Sequence(list_pretokenizers) |
|
|
|
def normalizer(self, proto): |
|
list_normalizers = [] |
|
if self.original_tokenizer.do_lower_case: |
|
list_normalizers.append(normalizers.Lowercase()) |
|
list_normalizers.append(normalizers.Strip()) |
|
|
|
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap |
|
if precompiled_charsmap: |
|
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap)) |
|
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " ")) |
|
|
|
return normalizers.Sequence(list_normalizers) |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="[CLS]:0 $A:0 [SEP]:0", |
|
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1", |
|
special_tokens=[ |
|
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")), |
|
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")), |
|
], |
|
) |
|
|
|
|
|
class MBartConverter(SpmConverter): |
|
def vocab(self, proto): |
|
vocab = [ |
|
("<s>", 0.0), |
|
("<pad>", 0.0), |
|
("</s>", 0.0), |
|
("<unk>", 0.0), |
|
] |
|
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] |
|
vocab += [ |
|
("ar_AR", 0.0), |
|
("cs_CZ", 0.0), |
|
("de_DE", 0.0), |
|
("en_XX", 0.0), |
|
("es_XX", 0.0), |
|
("et_EE", 0.0), |
|
("fi_FI", 0.0), |
|
("fr_XX", 0.0), |
|
("gu_IN", 0.0), |
|
("hi_IN", 0.0), |
|
("it_IT", 0.0), |
|
("ja_XX", 0.0), |
|
("kk_KZ", 0.0), |
|
("ko_KR", 0.0), |
|
("lt_LT", 0.0), |
|
("lv_LV", 0.0), |
|
("my_MM", 0.0), |
|
("ne_NP", 0.0), |
|
("nl_XX", 0.0), |
|
("ro_RO", 0.0), |
|
("ru_RU", 0.0), |
|
("si_LK", 0.0), |
|
("tr_TR", 0.0), |
|
("vi_VN", 0.0), |
|
("zh_CN", 0.0), |
|
] |
|
vocab += [("<mask>", 0.0)] |
|
return vocab |
|
|
|
def unk_id(self, proto): |
|
return 3 |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="$A </s> en_XX", |
|
pair="$A $B </s> en_XX", |
|
special_tokens=[ |
|
("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")), |
|
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), |
|
], |
|
) |
|
|
|
|
|
class MBart50Converter(SpmConverter): |
|
def vocab(self, proto): |
|
vocab = [ |
|
("<s>", 0.0), |
|
("<pad>", 0.0), |
|
("</s>", 0.0), |
|
("<unk>", 0.0), |
|
] |
|
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] |
|
|
|
vocab += [("ar_AR", 0.0), ("cs_CZ", 0.0), ("de_DE", 0.0), ("en_XX", 0.0), ("es_XX", 0.0), ("et_EE", 0.0), ("fi_FI", 0.0), ("fr_XX", 0.0), ("gu_IN", 0.0), ("hi_IN", 0.0), ("it_IT", 0.0), ("ja_XX", 0.0), ("kk_KZ", 0.0), ("ko_KR", 0.0), ("lt_LT", 0.0), ("lv_LV", 0.0), ("my_MM", 0.0), ("ne_NP", 0.0), ("nl_XX", 0.0), ("ro_RO", 0.0), ("ru_RU", 0.0), ("si_LK", 0.0), ("tr_TR", 0.0), ("vi_VN", 0.0), ("zh_CN", 0.0), ("af_ZA", 0.0), ("az_AZ", 0.0), ("bn_IN", 0.0), ("fa_IR", 0.0), ("he_IL", 0.0), ("hr_HR", 0.0), ("id_ID", 0.0), ("ka_GE", 0.0), ("km_KH", 0.0), ("mk_MK", 0.0), ("ml_IN", 0.0), ("mn_MN", 0.0), ("mr_IN", 0.0), ("pl_PL", 0.0), ("ps_AF", 0.0), ("pt_XX", 0.0), ("sv_SE", 0.0), ("sw_KE", 0.0), ("ta_IN", 0.0), ("te_IN", 0.0), ("th_TH", 0.0), ("tl_XX", 0.0), ("uk_UA", 0.0), ("ur_PK", 0.0), ("xh_ZA", 0.0), ("gl_ES", 0.0), ("sl_SI", 0.0)] |
|
|
|
vocab += [("<mask>", 0.0)] |
|
return vocab |
|
|
|
def unk_id(self, proto): |
|
return 3 |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="en_XX $A </s>", |
|
pair="en_XX $A $B </s>", |
|
special_tokens=[ |
|
("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")), |
|
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), |
|
], |
|
) |
|
|
|
|
|
class NllbConverter(SpmConverter): |
|
def vocab(self, proto): |
|
vocab = [ |
|
("<s>", 0.0), |
|
("<pad>", 0.0), |
|
("</s>", 0.0), |
|
("<unk>", 0.0), |
|
] |
|
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] |
|
vocab += [ |
|
|
|
('ace_Arab', 0.0), ('ace_Latn', 0.0), ('acm_Arab', 0.0), ('acq_Arab', 0.0), ('aeb_Arab', 0.0), ('afr_Latn', 0.0), ('ajp_Arab', 0.0), ('aka_Latn', 0.0), ('amh_Ethi', 0.0), ('apc_Arab', 0.0), ('arb_Arab', 0.0), ('ars_Arab', 0.0), ('ary_Arab', 0.0), ('arz_Arab', 0.0), ('asm_Beng', 0.0), ('ast_Latn', 0.0), ('awa_Deva', 0.0), ('ayr_Latn', 0.0), ('azb_Arab', 0.0), ('azj_Latn', 0.0), ('bak_Cyrl', 0.0), ('bam_Latn', 0.0), ('ban_Latn', 0.0), ('bel_Cyrl', 0.0), ('bem_Latn', 0.0), ('ben_Beng', 0.0), ('bho_Deva', 0.0), ('bjn_Arab', 0.0), ('bjn_Latn', 0.0), ('bod_Tibt', 0.0), ('bos_Latn', 0.0), ('bug_Latn', 0.0), ('bul_Cyrl', 0.0), ('cat_Latn', 0.0), ('ceb_Latn', 0.0), ('ces_Latn', 0.0), ('cjk_Latn', 0.0), ('ckb_Arab', 0.0), ('crh_Latn', 0.0), ('cym_Latn', 0.0), ('dan_Latn', 0.0), ('deu_Latn', 0.0), ('dik_Latn', 0.0), ('dyu_Latn', 0.0), ('dzo_Tibt', 0.0), ('ell_Grek', 0.0), ('eng_Latn', 0.0), ('epo_Latn', 0.0), ('est_Latn', 0.0), ('eus_Latn', 0.0), ('ewe_Latn', 0.0), ('fao_Latn', 0.0), ('pes_Arab', 0.0), ('fij_Latn', 0.0), ('fin_Latn', 0.0), ('fon_Latn', 0.0), ('fra_Latn', 0.0), ('fur_Latn', 0.0), ('fuv_Latn', 0.0), ('gla_Latn', 0.0), ('gle_Latn', 0.0), ('glg_Latn', 0.0), ('grn_Latn', 0.0), ('guj_Gujr', 0.0), ('hat_Latn', 0.0), ('hau_Latn', 0.0), ('heb_Hebr', 0.0), ('hin_Deva', 0.0), ('hne_Deva', 0.0), ('hrv_Latn', 0.0), ('hun_Latn', 0.0), ('hye_Armn', 0.0), ('ibo_Latn', 0.0), ('ilo_Latn', 0.0), ('ind_Latn', 0.0), ('isl_Latn', 0.0), ('ita_Latn', 0.0), ('jav_Latn', 0.0), ('jpn_Jpan', 0.0), ('kab_Latn', 0.0), ('kac_Latn', 0.0), ('kam_Latn', 0.0), ('kan_Knda', 0.0), ('kas_Arab', 0.0), ('kas_Deva', 0.0), ('kat_Geor', 0.0), ('knc_Arab', 0.0), ('knc_Latn', 0.0), ('kaz_Cyrl', 0.0), ('kbp_Latn', 0.0), ('kea_Latn', 0.0), ('khm_Khmr', 0.0), ('kik_Latn', 0.0), ('kin_Latn', 0.0), ('kir_Cyrl', 0.0), ('kmb_Latn', 0.0), ('kon_Latn', 0.0), ('kor_Hang', 0.0), ('kmr_Latn', 0.0), ('lao_Laoo', 0.0), ('lvs_Latn', 0.0), ('lij_Latn', 0.0), ('lim_Latn', 0.0), ('lin_Latn', 0.0), ('lit_Latn', 0.0), ('lmo_Latn', 0.0), ('ltg_Latn', 0.0), ('ltz_Latn', 0.0), ('lua_Latn', 0.0), ('lug_Latn', 0.0), ('luo_Latn', 0.0), ('lus_Latn', 0.0), ('mag_Deva', 0.0), ('mai_Deva', 0.0), ('mal_Mlym', 0.0), ('mar_Deva', 0.0), ('min_Latn', 0.0), ('mkd_Cyrl', 0.0), ('plt_Latn', 0.0), ('mlt_Latn', 0.0), ('mni_Beng', 0.0), ('khk_Cyrl', 0.0), ('mos_Latn', 0.0), ('mri_Latn', 0.0), ('zsm_Latn', 0.0), ('mya_Mymr', 0.0), ('nld_Latn', 0.0), ('nno_Latn', 0.0), ('nob_Latn', 0.0), ('npi_Deva', 0.0), ('nso_Latn', 0.0), ('nus_Latn', 0.0), ('nya_Latn', 0.0), ('oci_Latn', 0.0), ('gaz_Latn', 0.0), ('ory_Orya', 0.0), ('pag_Latn', 0.0), ('pan_Guru', 0.0), ('pap_Latn', 0.0), ('pol_Latn', 0.0), ('por_Latn', 0.0), ('prs_Arab', 0.0), ('pbt_Arab', 0.0), ('quy_Latn', 0.0), ('ron_Latn', 0.0), ('run_Latn', 0.0), ('rus_Cyrl', 0.0), ('sag_Latn', 0.0), ('san_Deva', 0.0), ('sat_Beng', 0.0), ('scn_Latn', 0.0), ('shn_Mymr', 0.0), ('sin_Sinh', 0.0), ('slk_Latn', 0.0), ('slv_Latn', 0.0), ('smo_Latn', 0.0), ('sna_Latn', 0.0), ('snd_Arab', 0.0), ('som_Latn', 0.0), ('sot_Latn', 0.0), ('spa_Latn', 0.0), ('als_Latn', 0.0), ('srd_Latn', 0.0), ('srp_Cyrl', 0.0), ('ssw_Latn', 0.0), ('sun_Latn', 0.0), ('swe_Latn', 0.0), ('swh_Latn', 0.0), ('szl_Latn', 0.0), ('tam_Taml', 0.0), ('tat_Cyrl', 0.0), ('tel_Telu', 0.0), ('tgk_Cyrl', 0.0), ('tgl_Latn', 0.0), ('tha_Thai', 0.0), ('tir_Ethi', 0.0), ('taq_Latn', 0.0), ('taq_Tfng', 0.0), ('tpi_Latn', 0.0), ('tsn_Latn', 0.0), ('tso_Latn', 0.0), ('tuk_Latn', 0.0), ('tum_Latn', 0.0), ('tur_Latn', 0.0), ('twi_Latn', 0.0), ('tzm_Tfng', 0.0), ('uig_Arab', 0.0), ('ukr_Cyrl', 0.0), ('umb_Latn', 0.0), ('urd_Arab', 0.0), ('uzn_Latn', 0.0), ('vec_Latn', 0.0), ('vie_Latn', 0.0), ('war_Latn', 0.0), ('wol_Latn', 0.0), ('xho_Latn', 0.0), ('ydd_Hebr', 0.0), ('yor_Latn', 0.0), ('yue_Hant', 0.0), ('zho_Hans', 0.0), ('zho_Hant', 0.0), ('zul_Latn', 0.0) |
|
|
|
] |
|
vocab += [("<mask>", 0.0)] |
|
return vocab |
|
|
|
def unk_id(self, proto): |
|
return 3 |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="eng_Latn $A </s>", |
|
pair="eng_Latn $A $B </s>", |
|
special_tokens=[ |
|
("eng_Latn", self.original_tokenizer.convert_tokens_to_ids("eng_Latn")), |
|
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), |
|
], |
|
) |
|
|
|
|
|
class XLMRobertaConverter(SpmConverter): |
|
def vocab(self, proto): |
|
vocab = [ |
|
("<s>", 0.0), |
|
("<pad>", 0.0), |
|
("</s>", 0.0), |
|
("<unk>", 0.0), |
|
] |
|
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] |
|
vocab += [("<mask>", 0.0)] |
|
return vocab |
|
|
|
def unk_id(self, proto): |
|
unk_id = 3 |
|
return unk_id |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="<s> $A </s>", |
|
pair="<s> $A </s> </s> $B </s>", |
|
special_tokens=[ |
|
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")), |
|
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), |
|
], |
|
) |
|
|
|
|
|
class XLNetConverter(SpmConverter): |
|
def vocab(self, proto): |
|
return [ |
|
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100) |
|
for piece in proto.pieces |
|
] |
|
|
|
def normalizer(self, proto): |
|
list_normalizers = [ |
|
normalizers.Replace("``", '"'), |
|
normalizers.Replace("''", '"'), |
|
] |
|
if not self.original_tokenizer.keep_accents: |
|
list_normalizers.append(normalizers.NFKD()) |
|
list_normalizers.append(normalizers.StripAccents()) |
|
if self.original_tokenizer.do_lower_case: |
|
list_normalizers.append(normalizers.Lowercase()) |
|
|
|
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap |
|
|
|
if precompiled_charsmap: |
|
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap)) |
|
|
|
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " ")) |
|
return normalizers.Sequence(list_normalizers) |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="$A:0 <sep>:0 <cls>:2", |
|
pair="$A:0 <sep>:0 $B:1 <sep>:1 <cls>:2", |
|
special_tokens=[ |
|
("<sep>", self.original_tokenizer.convert_tokens_to_ids("<sep>")), |
|
("<cls>", self.original_tokenizer.convert_tokens_to_ids("<cls>")), |
|
], |
|
) |
|
|
|
|
|
class ReformerConverter(SpmConverter): |
|
pass |
|
|
|
|
|
class RemBertConverter(SpmConverter): |
|
|
|
def normalizer(self, proto): |
|
list_normalizers = [ |
|
normalizers.Replace("``", '"'), |
|
normalizers.Replace("''", '"'), |
|
normalizers.Replace(Regex(" {2,}"), " "), |
|
] |
|
if not self.original_tokenizer.keep_accents: |
|
list_normalizers.append(normalizers.NFKD()) |
|
list_normalizers.append(normalizers.StripAccents()) |
|
if self.original_tokenizer.do_lower_case: |
|
list_normalizers.append(normalizers.Lowercase()) |
|
|
|
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap |
|
|
|
if precompiled_charsmap: |
|
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap)) |
|
|
|
return normalizers.Sequence(list_normalizers) |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="[CLS]:0 $A:0 [SEP]:0", |
|
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1", |
|
special_tokens=[ |
|
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")), |
|
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")), |
|
], |
|
) |
|
|
|
|
|
class BertGenerationConverter(SpmConverter): |
|
pass |
|
|
|
|
|
class PegasusConverter(SpmConverter): |
|
def vocab(self, proto): |
|
vocab = [ |
|
(self.original_tokenizer.pad_token, 0.0), |
|
(self.original_tokenizer.eos_token, 0.0), |
|
] |
|
|
|
if self.original_tokenizer.mask_token_sent is not None: |
|
vocab += [(self.original_tokenizer.mask_token_sent, 0.0)] |
|
|
|
if ( |
|
self.original_tokenizer.mask_token is not None |
|
and self.original_tokenizer.mask_token_id < self.original_tokenizer.offset |
|
): |
|
vocab += [(self.original_tokenizer.mask_token, 0.0)] |
|
|
|
vocab += [(f"<unk_{i}>", -100.0) for i in range(2, self.original_tokenizer.offset)] |
|
vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]] |
|
return vocab |
|
|
|
def unk_id(self, proto): |
|
return proto.trainer_spec.unk_id + self.original_tokenizer.offset |
|
|
|
def pre_tokenizer(self, replacement, add_prefix_space): |
|
return pre_tokenizers.Sequence( |
|
[ |
|
pre_tokenizers.WhitespaceSplit(), |
|
pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space), |
|
] |
|
) |
|
|
|
def post_processor(self): |
|
eos = self.original_tokenizer.eos_token |
|
special_tokens = [ |
|
(eos, self.original_tokenizer.eos_token_id), |
|
] |
|
return processors.TemplateProcessing(single=["$A", eos], pair=["$A", "$B", eos], special_tokens=special_tokens) |
|
|
|
|
|
class T5Converter(SpmConverter): |
|
def vocab(self, proto): |
|
num_extra_ids = self.original_tokenizer._extra_ids |
|
vocab = [(piece.piece, piece.score) for piece in proto.pieces] |
|
vocab += [(f"<extra_id_{i}>", 0.0) for i in range(num_extra_ids - 1, -1, -1)] |
|
return vocab |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single=["$A", "</s>"], |
|
pair=["$A", "</s>", "$B", "</s>"], |
|
special_tokens=[ |
|
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), |
|
], |
|
) |
|
|
|
|
|
class WhisperConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
vocab = self.original_tokenizer.encoder |
|
merges = list(self.original_tokenizer.bpe_ranks.keys()) |
|
|
|
tokenizer = Tokenizer( |
|
BPE( |
|
vocab=vocab, |
|
merges=merges, |
|
dropout=None, |
|
continuing_subword_prefix="", |
|
end_of_word_suffix="", |
|
fuse_unk=False, |
|
) |
|
) |
|
|
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space) |
|
tokenizer.decoder = decoders.ByteLevel() |
|
|
|
prefix_token_ids = self.original_tokenizer.prefix_tokens |
|
prefixes = self.original_tokenizer.convert_ids_to_tokens(prefix_token_ids) |
|
eos = self.original_tokenizer.eos_token |
|
eos_token_id = self.original_tokenizer.eos_token_id |
|
prefix_template = " ".join([f"{token}:0" for token in prefixes]) |
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single=f"{prefix_template} $A:0 {eos}:0", |
|
pair=f"{prefix_template} $A:0 $B:1 {eos}:1", |
|
special_tokens=[ |
|
(eos, eos_token_id), |
|
*zip(prefixes, prefix_token_ids), |
|
], |
|
) |
|
|
|
return tokenizer |
|
|
|
|
|
class BigBirdConverter(SpmConverter): |
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="[CLS]:0 $A:0 [SEP]:0", |
|
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1", |
|
special_tokens=[ |
|
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")), |
|
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")), |
|
], |
|
) |
|
|
|
|
|
class CLIPConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
vocab = self.original_tokenizer.encoder |
|
merges = list(self.original_tokenizer.bpe_ranks.keys()) |
|
unk_token = self.original_tokenizer.unk_token |
|
|
|
tokenizer = Tokenizer( |
|
BPE( |
|
vocab=vocab, |
|
merges=merges, |
|
dropout=None, |
|
continuing_subword_prefix="", |
|
end_of_word_suffix="</w>", |
|
fuse_unk=False, |
|
unk_token=str(unk_token), |
|
) |
|
) |
|
|
|
tokenizer.normalizer = normalizers.Sequence( |
|
[normalizers.NFC(), normalizers.Replace(Regex(r"\s+"), " "), normalizers.Lowercase()] |
|
) |
|
tokenizer.pre_tokenizer = pre_tokenizers.Sequence( |
|
[ |
|
pre_tokenizers.Split( |
|
Regex(r"""'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+"""), |
|
behavior="removed", |
|
invert=True, |
|
), |
|
pre_tokenizers.ByteLevel(add_prefix_space=False), |
|
] |
|
) |
|
tokenizer.decoder = decoders.ByteLevel() |
|
|
|
|
|
tokenizer.post_processor = processors.RobertaProcessing( |
|
sep=(self.original_tokenizer.eos_token, self.original_tokenizer.eos_token_id), |
|
cls=(self.original_tokenizer.bos_token, self.original_tokenizer.bos_token_id), |
|
add_prefix_space=False, |
|
trim_offsets=False, |
|
) |
|
return tokenizer |
|
|
|
|
|
class LayoutLMv2Converter(Converter): |
|
def converted(self) -> Tokenizer: |
|
vocab = self.original_tokenizer.vocab |
|
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token))) |
|
|
|
tokenize_chinese_chars = False |
|
strip_accents = False |
|
do_lower_case = True |
|
if hasattr(self.original_tokenizer, "basic_tokenizer"): |
|
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars |
|
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents |
|
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case |
|
|
|
tokenizer.normalizer = normalizers.BertNormalizer( |
|
clean_text=True, |
|
handle_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
lowercase=do_lower_case, |
|
) |
|
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() |
|
|
|
cls = str(self.original_tokenizer.cls_token) |
|
sep = str(self.original_tokenizer.sep_token) |
|
cls_token_id = self.original_tokenizer.cls_token_id |
|
sep_token_id = self.original_tokenizer.sep_token_id |
|
|
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single=f"{cls}:0 $A:0 {sep}:0", |
|
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1", |
|
special_tokens=[ |
|
(cls, cls_token_id), |
|
(sep, sep_token_id), |
|
], |
|
) |
|
tokenizer.decoder = decoders.WordPiece(prefix="##") |
|
|
|
return tokenizer |
|
|
|
|
|
class BlenderbotConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
ot = self.original_tokenizer |
|
vocab = ot.encoder |
|
merges = list(ot.bpe_ranks.keys()) |
|
|
|
tokenizer = Tokenizer( |
|
BPE( |
|
vocab=vocab, |
|
merges=merges, |
|
dropout=None, |
|
continuing_subword_prefix="", |
|
end_of_word_suffix="", |
|
fuse_unk=False, |
|
) |
|
) |
|
|
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space) |
|
tokenizer.decoder = decoders.ByteLevel() |
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single=f"$A:0 {ot.eos_token}:0", |
|
special_tokens=[ |
|
(ot.eos_token, ot.eos_token_id), |
|
], |
|
) |
|
|
|
return tokenizer |
|
|
|
|
|
class XGLMConverter(SpmConverter): |
|
def vocab(self, proto): |
|
vocab = [ |
|
("<s>", 0.0), |
|
("<pad>", 0.0), |
|
("</s>", 0.0), |
|
("<unk>", 0.0), |
|
] |
|
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] |
|
|
|
vocab += [("<madeupword0>", 0.0), ("<madeupword1>", 0.0), ("<madeupword2>", 0.0), ("<madeupword3>", 0.0), ("<madeupword4>", 0.0), ("<madeupword5>", 0.0), ("<madeupword6>", 0.0)] |
|
|
|
return vocab |
|
|
|
def unk_id(self, proto): |
|
unk_id = 3 |
|
return unk_id |
|
|
|
def post_processor(self): |
|
return processors.TemplateProcessing( |
|
single="</s> $A", |
|
pair="</s> $A </s> </s> $B", |
|
special_tokens=[ |
|
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")), |
|
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), |
|
], |
|
) |
|
|
|
|
|
class LlamaConverter(SpmConverter): |
|
handle_byte_fallback = True |
|
|
|
def vocab(self, proto): |
|
vocab = [ |
|
("<unk>", 0.0), |
|
("<s>", 0.0), |
|
("</s>", 0.0), |
|
] |
|
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] |
|
return vocab |
|
|
|
def unk_id(self, proto): |
|
unk_id = 0 |
|
return unk_id |
|
|
|
def decoder(self, replacement, add_prefix_space): |
|
return decoders.Sequence( |
|
[ |
|
decoders.Replace("▁", " "), |
|
decoders.ByteFallback(), |
|
decoders.Fuse(), |
|
decoders.Strip(content=" ", left=1), |
|
] |
|
) |
|
|
|
def tokenizer(self, proto): |
|
model_type = proto.trainer_spec.model_type |
|
vocab_scores = self.vocab(proto) |
|
if model_type == 1: |
|
import tokenizers |
|
|
|
if version.parse(tokenizers.__version__) < version.parse("0.14.0"): |
|
tokenizer = Tokenizer(Unigram(vocab_scores, 0)) |
|
else: |
|
tokenizer = Tokenizer(Unigram(vocab_scores, 0, byte_fallback=True)) |
|
|
|
elif model_type == 2: |
|
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores) |
|
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)} |
|
tokenizer = Tokenizer( |
|
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True) |
|
) |
|
tokenizer.add_special_tokens( |
|
[ |
|
AddedToken("<unk>"), |
|
AddedToken("<s>"), |
|
AddedToken("</s>"), |
|
] |
|
) |
|
else: |
|
raise Exception( |
|
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm" |
|
) |
|
|
|
return tokenizer |
|
|
|
def normalizer(self, proto): |
|
return normalizers.Sequence( |
|
[ |
|
normalizers.Prepend(prepend="▁"), |
|
normalizers.Replace(pattern=" ", content="▁"), |
|
] |
|
) |
|
|
|
def pre_tokenizer(self, replacement, add_prefix_space): |
|
return None |
|
|
|
def post_processor(self): |
|
|
|
return None |
|
|
|
|
|
class MarkupLMConverter(Converter): |
|
def converted(self) -> Tokenizer: |
|
ot = self.original_tokenizer |
|
vocab = ot.encoder |
|
merges = list(ot.bpe_ranks.keys()) |
|
|
|
tokenizer = Tokenizer( |
|
BPE( |
|
vocab=vocab, |
|
merges=merges, |
|
dropout=None, |
|
continuing_subword_prefix="", |
|
end_of_word_suffix="", |
|
fuse_unk=False, |
|
unk_token=self.original_tokenizer.unk_token, |
|
) |
|
) |
|
|
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space) |
|
tokenizer.decoder = decoders.ByteLevel() |
|
|
|
cls = str(self.original_tokenizer.cls_token) |
|
sep = str(self.original_tokenizer.sep_token) |
|
cls_token_id = self.original_tokenizer.cls_token_id |
|
sep_token_id = self.original_tokenizer.sep_token_id |
|
|
|
tokenizer.post_processor = processors.TemplateProcessing( |
|
single=f"{cls} $A {sep}", |
|
pair=f"{cls} $A {sep} $B {sep}", |
|
special_tokens=[ |
|
(cls, cls_token_id), |
|
(sep, sep_token_id), |
|
], |
|
) |
|
|
|
return tokenizer |
|
|
|
|
|
SLOW_TO_FAST_CONVERTERS = { |
|
"AlbertTokenizer": AlbertConverter, |
|
"BartTokenizer": RobertaConverter, |
|
"BarthezTokenizer": BarthezConverter, |
|
"BertTokenizer": BertConverter, |
|
"BigBirdTokenizer": BigBirdConverter, |
|
"BlenderbotTokenizer": BlenderbotConverter, |
|
"CamembertTokenizer": CamembertConverter, |
|
"CLIPTokenizer": CLIPConverter, |
|
"CodeGenTokenizer": GPT2Converter, |
|
"ConvBertTokenizer": BertConverter, |
|
"DebertaTokenizer": DebertaConverter, |
|
"DebertaV2Tokenizer": DebertaV2Converter, |
|
"DistilBertTokenizer": BertConverter, |
|
"DPRReaderTokenizer": BertConverter, |
|
"DPRQuestionEncoderTokenizer": BertConverter, |
|
"DPRContextEncoderTokenizer": BertConverter, |
|
"ElectraTokenizer": BertConverter, |
|
"FNetTokenizer": AlbertConverter, |
|
"FunnelTokenizer": FunnelConverter, |
|
"GPT2Tokenizer": GPT2Converter, |
|
"HerbertTokenizer": HerbertConverter, |
|
"LayoutLMTokenizer": BertConverter, |
|
"LayoutLMv2Tokenizer": BertConverter, |
|
"LayoutLMv3Tokenizer": RobertaConverter, |
|
"LayoutXLMTokenizer": XLMRobertaConverter, |
|
"LongformerTokenizer": RobertaConverter, |
|
"LEDTokenizer": RobertaConverter, |
|
"LxmertTokenizer": BertConverter, |
|
"MarkupLMTokenizer": MarkupLMConverter, |
|
"MBartTokenizer": MBartConverter, |
|
"MBart50Tokenizer": MBart50Converter, |
|
"MPNetTokenizer": MPNetConverter, |
|
"MobileBertTokenizer": BertConverter, |
|
"MvpTokenizer": RobertaConverter, |
|
"NllbTokenizer": NllbConverter, |
|
"OpenAIGPTTokenizer": OpenAIGPTConverter, |
|
"PegasusTokenizer": PegasusConverter, |
|
"RealmTokenizer": BertConverter, |
|
"ReformerTokenizer": ReformerConverter, |
|
"RemBertTokenizer": RemBertConverter, |
|
"RetriBertTokenizer": BertConverter, |
|
"RobertaTokenizer": RobertaConverter, |
|
"RoFormerTokenizer": RoFormerConverter, |
|
"SqueezeBertTokenizer": BertConverter, |
|
"T5Tokenizer": T5Converter, |
|
"WhisperTokenizer": WhisperConverter, |
|
"XLMRobertaTokenizer": XLMRobertaConverter, |
|
"XLNetTokenizer": XLNetConverter, |
|
"SplinterTokenizer": SplinterConverter, |
|
"XGLMTokenizer": XGLMConverter, |
|
"LlamaTokenizer": LlamaConverter, |
|
"CodeLlamaTokenizer": LlamaConverter, |
|
} |
|
|
|
|
|
def convert_slow_tokenizer(transformer_tokenizer) -> Tokenizer: |
|
""" |
|
Utilities to convert a slow tokenizer instance in a fast tokenizer instance. |
|
|
|
Args: |
|
transformer_tokenizer ([`~tokenization_utils_base.PreTrainedTokenizer`]): |
|
Instance of a slow tokenizer to convert in the backend tokenizer for |
|
[`~tokenization_utils_base.PreTrainedTokenizerFast`]. |
|
|
|
Return: |
|
A instance of [`~tokenizers.Tokenizer`] to be used as the backend tokenizer of a |
|
[`~tokenization_utils_base.PreTrainedTokenizerFast`] |
|
""" |
|
|
|
tokenizer_class_name = transformer_tokenizer.__class__.__name__ |
|
|
|
if tokenizer_class_name not in SLOW_TO_FAST_CONVERTERS: |
|
raise ValueError( |
|
f"An instance of tokenizer class {tokenizer_class_name} cannot be converted in a Fast tokenizer instance." |
|
" No converter was found. Currently available slow->fast convertors:" |
|
f" {list(SLOW_TO_FAST_CONVERTERS.keys())}" |
|
) |
|
|
|
converter_class = SLOW_TO_FAST_CONVERTERS[tokenizer_class_name] |
|
|
|
return converter_class(transformer_tokenizer).converted() |
|
|