|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from ..models.auto import AutoModelForSeq2SeqLM, AutoTokenizer |
|
from .base import PipelineTool |
|
|
|
|
|
QA_PROMPT = """Here is a text containing a lot of information: '''{text}'''. |
|
|
|
Can you answer this question about the text: '{question}'""" |
|
|
|
|
|
class TextQuestionAnsweringTool(PipelineTool): |
|
default_checkpoint = "google/flan-t5-base" |
|
description = ( |
|
"This is a tool that answers questions related to a text. It takes two arguments named `text`, which is the " |
|
"text where to find the answer, and `question`, which is the question, and returns the answer to the question." |
|
) |
|
name = "text_qa" |
|
pre_processor_class = AutoTokenizer |
|
model_class = AutoModelForSeq2SeqLM |
|
|
|
inputs = ["text", "text"] |
|
outputs = ["text"] |
|
|
|
def encode(self, text: str, question: str): |
|
prompt = QA_PROMPT.format(text=text, question=question) |
|
return self.pre_processor(prompt, return_tensors="pt") |
|
|
|
def forward(self, inputs): |
|
output_ids = self.model.generate(**inputs) |
|
|
|
in_b, _ = inputs["input_ids"].shape |
|
out_b = output_ids.shape[0] |
|
|
|
return output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:])[0][0] |
|
|
|
def decode(self, outputs): |
|
return self.pre_processor.decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
|