|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from .agents import BASE_PYTHON_TOOLS, clean_code_for_chat, clean_code_for_run |
|
from .python_interpreter import InterpretorError, evaluate |
|
|
|
|
|
|
|
def classifier(text, labels): |
|
return f"This is the classification of {text} along {labels}." |
|
|
|
|
|
def translator(text, src_lang, tgt_lang): |
|
return f"This is the translation of {text} from {src_lang} to {tgt_lang}." |
|
|
|
|
|
def speaker(text): |
|
return f"This is actually a sound reading {text}." |
|
|
|
|
|
def transcriber(audio): |
|
if "sound" not in audio: |
|
raise ValueError(f"`audio` ({audio}) is not a sound.") |
|
return f"This is the transcribed text from {audio}." |
|
|
|
|
|
def image_generator(prompt): |
|
return f"This is actually an image representing {prompt}." |
|
|
|
|
|
def image_captioner(image): |
|
if "image" not in image: |
|
raise ValueError(f"`image` ({image}) is not an image.") |
|
return f"This is a description of {image}." |
|
|
|
|
|
def image_transformer(image, prompt): |
|
if "image" not in image: |
|
raise ValueError(f"`image` ({image}) is not an image.") |
|
return f"This is a transformation of {image} according to {prompt}." |
|
|
|
|
|
def question_answerer(text, question): |
|
return f"This is the answer to {question} from {text}." |
|
|
|
|
|
def image_qa(image, question): |
|
if "image" not in image: |
|
raise ValueError(f"`image` ({image}) is not an image.") |
|
return f"This is the answer to {question} from {image}." |
|
|
|
|
|
def text_downloader(url): |
|
return f"This is the content of {url}." |
|
|
|
|
|
def summarizer(text): |
|
return f"This is a summary of {text}." |
|
|
|
|
|
def video_generator(prompt, seconds=2): |
|
return f"A video of {prompt}" |
|
|
|
|
|
def document_qa(image, question): |
|
return f"This is the answer to {question} from the document {image}." |
|
|
|
|
|
def image_segmenter(image, prompt): |
|
return f"This is the mask of {prompt} in {image}" |
|
|
|
|
|
TEST_TOOLS = { |
|
"text_classifier": classifier, |
|
"translator": translator, |
|
"text_reader": speaker, |
|
"summarizer": summarizer, |
|
"transcriber": transcriber, |
|
"image_generator": image_generator, |
|
"image_captioner": image_captioner, |
|
"image_transformer": image_transformer, |
|
"text_qa": question_answerer, |
|
"text_downloader": text_downloader, |
|
"image_qa": image_qa, |
|
"video_generator": video_generator, |
|
"document_qa": document_qa, |
|
"image_segmenter": image_segmenter, |
|
} |
|
|
|
|
|
class Problem: |
|
""" |
|
A class regrouping all the information to solve a problem on which we will evaluate agents. |
|
|
|
Args: |
|
task (`str` ou `list[str]`): |
|
One or several descriptions of the task to perform. If a list, it should contain variations on the |
|
phrasing, but for the same task. |
|
inputs (`list[str]` or `dict[str, str]`): |
|
The inputs that will be fed to the tools. For this testing environment, only strings are accepted as |
|
values. Pass along a dictionary when you want to specify the values of each inputs, or just the list of |
|
inputs expected (the value used will be `<<input_name>>` in this case). |
|
answer (`str` or `list[str`]): |
|
The theoretical answer (or list of possible valid answers) to the problem, as code. |
|
""" |
|
|
|
def __init__(self, task, inputs, answer): |
|
self.task = task |
|
self.inputs = inputs |
|
self.answer = answer |
|
|
|
|
|
|
|
EVALUATION_TASKS = [ |
|
Problem( |
|
task=[ |
|
"Is the following `text` (in Spanish) positive or negative?", |
|
"Is the text in the variable `text` (in Spanish) positive or negative?", |
|
"Translate the following `text` from Spanish to English then tell me if its positive or negative.", |
|
], |
|
inputs=["text"], |
|
answer="""text_classifier(translator(text, src_lang="Spanish", tgt_lang="English"), labels=["positive", "negative"])""", |
|
), |
|
Problem( |
|
task=[ |
|
"Tell me out loud what the `image` contains.", |
|
"Describe the following `image` out loud.", |
|
"Find what is in the picture stored in `image` then read it out loud.", |
|
], |
|
inputs=["image"], |
|
answer=[ |
|
"text_reader(image_captioner(image))", |
|
"text_reader(image_qa(image, question='What is in the image?'))", |
|
], |
|
), |
|
Problem( |
|
task=[ |
|
"Generate an image from the text given in `text_input`. Then transform it according to the text in `prompt`.", |
|
"Use the following `text_input` to generate an image, then transform it by using the text in `prompt`.", |
|
], |
|
inputs=["text_input", "prompt"], |
|
answer="image_transformer(image_generator(text_input), prompt)", |
|
), |
|
Problem( |
|
task=[ |
|
"Download the content of `url`, summarize it then generate an image from its content.", |
|
"Use a summary of the web page at `url` to generate an image.", |
|
"Summarize the content of the web page at `url`, and use the result to generate an image.", |
|
], |
|
inputs=["url"], |
|
answer="image_generator(summarizer(text_downloader(url)))", |
|
), |
|
Problem( |
|
task=[ |
|
"Transform the following `image` using the prompt in `text`. The prompt is in Spanish.", |
|
"Use the text prompt in `text` (in Spanish) to transform the following `image`.", |
|
"Translate the `text` from Spanish to English then use it to transform the picture in `image`.", |
|
], |
|
inputs=["text", "image"], |
|
answer="image_transformer(image, translator(text, src_lang='Spanish', tgt_lang='English'))", |
|
), |
|
Problem( |
|
task=[ |
|
"Download the content of `url`, summarize it then read it out loud to me.", |
|
"Read me a summary of the web page at `url`.", |
|
], |
|
inputs=["url"], |
|
answer="text_reader(summarizer(text_downloader(url)))", |
|
), |
|
Problem( |
|
task=[ |
|
"Generate an image from the text given in `text_input`.", |
|
], |
|
inputs=["text_input"], |
|
answer="image_generator(text_input)", |
|
), |
|
Problem( |
|
task=[ |
|
"Replace the beaver in the `image` by the `prompt`.", |
|
"Transform the `image` so that it contains the `prompt`.", |
|
"Use `prompt` to transform this `image`.", |
|
], |
|
inputs=["image", "prompt"], |
|
answer="image_transformer(image, prompt)", |
|
), |
|
Problem( |
|
task=[ |
|
"Provide me the summary of the `text`, then read it to me before transcribing it and translating it in French.", |
|
"Summarize `text`, read it out loud then transcribe the audio and translate it in French.", |
|
"Read me a summary of the the `text` out loud. Transcribe this and translate it in French.", |
|
], |
|
inputs=["text"], |
|
answer="translator(transcriber(text_reader(summarizer(text))), src_lang='English', tgt_lang='French')", |
|
), |
|
Problem( |
|
task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."], |
|
inputs={"prompt": "A lobster swimming"}, |
|
answer="video_generator('A lobster swimming')", |
|
), |
|
Problem( |
|
task=[ |
|
"Download the following file `url`, summarize it in a few words and generate a video from it." |
|
"Fetch the file at this `url`, summarize it, and create an animation out of it." |
|
], |
|
inputs=["url"], |
|
answer="video_generator(summarizer(text_downloader(url)))", |
|
), |
|
] |
|
|
|
|
|
EVALUATION_CHATS = [ |
|
[ |
|
Problem( |
|
task=[ |
|
"Translate the following `text` from Spanish to English.", |
|
"Translate the following `text` from Spanish to English.", |
|
], |
|
inputs=["text"], |
|
answer="translated_text=translator(text, src_lang='Spanish', tgt_lang='English')", |
|
), |
|
Problem( |
|
task=[ |
|
"Is it positive or negative?", |
|
"Tell me if its positive or negative.", |
|
], |
|
inputs=[], |
|
answer="text_classifier(translated_text, labels=['positive', 'negative'])", |
|
), |
|
], |
|
[ |
|
Problem( |
|
task=[ |
|
"What does this `image` contain?", |
|
"Describe the following `image`.", |
|
"Find what is in the picture stored in `image`", |
|
], |
|
inputs=["image"], |
|
answer=[ |
|
"description=image_captioner(image)", |
|
"description=image_qa(image, question='What is in the image?')", |
|
], |
|
), |
|
Problem( |
|
task=["Now, read the description out loud.", "Great! Can you read it out loud?", "Read it out loud."], |
|
inputs=[], |
|
answer=["audio=text_reader(description)", "audio=text_reader(description)"], |
|
), |
|
], |
|
[ |
|
Problem( |
|
task=[ |
|
"Generate an image from the text given in `text_input`.", |
|
"Use the following `text_input` to generate an image", |
|
], |
|
inputs=["text_input"], |
|
answer="image = image_generator(text_input)", |
|
), |
|
Problem( |
|
task=[ |
|
"Transform it according to the text in `prompt`.", |
|
"Transform it by using the text in `prompt`.", |
|
], |
|
inputs=["prompt"], |
|
answer="image_transformer(image, prompt)", |
|
), |
|
], |
|
[ |
|
Problem( |
|
task=[ |
|
"Download the content of `url` and summarize it.", |
|
"Summarize the content of the web page at `url`.", |
|
], |
|
inputs=["url"], |
|
answer="summary = summarizer(text_downloader(url))", |
|
), |
|
Problem( |
|
task=[ |
|
"Generate an image from its content.", |
|
"Use the previous result to generate an image.", |
|
], |
|
inputs=[], |
|
answer="image_generator(summary)", |
|
), |
|
], |
|
[ |
|
Problem( |
|
task=[ |
|
"Translate this Spanish `text` in English.", |
|
"Translate the `text` from Spanish to English.", |
|
], |
|
inputs=["text"], |
|
answer="translated_text = translator(text, src_lang='Spanish', tgt_lang='English')", |
|
), |
|
Problem( |
|
task=[ |
|
"Transform the following `image` using the translated `text`.", |
|
"Use the previous result to transform the following `image`.", |
|
], |
|
inputs=["image"], |
|
answer="image_transformer(image, translated_text)", |
|
), |
|
], |
|
[ |
|
Problem( |
|
task=["Download the content of `url`.", "Get me the text on the weg page `url`."], |
|
inputs=["url"], |
|
answer="text = text_downloader(url)", |
|
), |
|
Problem( |
|
task=["Summarize this text.", "Summarize this text."], |
|
inputs=[], |
|
answer="summary = summarizer(text)", |
|
), |
|
Problem( |
|
task=["Read it out loud to me.", "Read me the previous result."], |
|
inputs=[], |
|
answer="text_reader(summary)", |
|
), |
|
], |
|
[ |
|
Problem( |
|
task=[ |
|
"Generate an image from the text given in `text_input`.", |
|
], |
|
inputs=["text_input"], |
|
answer="image_generator(text_input)", |
|
), |
|
], |
|
[ |
|
Problem( |
|
task=[ |
|
"Replace the beaver in the `image` by the `prompt`.", |
|
"Transform the `image` so that it contains the `prompt`.", |
|
"Use `prompt` to transform this `image`.", |
|
], |
|
inputs=["image", "prompt"], |
|
answer="image_transformer(image, prompt)", |
|
), |
|
], |
|
[ |
|
Problem( |
|
task=["Provide me the summary of the `text`.", "Summarize `text`."], |
|
inputs=["text"], |
|
answer="summary = summarizer(text)", |
|
), |
|
Problem( |
|
task=["Read this summary to me.", "Read it out loud."], |
|
inputs=[], |
|
answer="audio = text_reader(summarizer(text))", |
|
), |
|
Problem( |
|
task=["Transcribing the previous result back in text.", "Transcribe the audio."], |
|
inputs=[], |
|
answer="text = transcriber(audio)", |
|
), |
|
Problem( |
|
task=["Translating the last result in French.", "Translate this in French."], |
|
inputs=[], |
|
answer="translator(text, src_lang='English', tgt_lang='French')", |
|
), |
|
], |
|
[ |
|
Problem( |
|
task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."], |
|
inputs={"prompt": "A lobster swimming"}, |
|
answer="video_generator('A lobster swimming')", |
|
), |
|
], |
|
[ |
|
Problem( |
|
task=[ |
|
"Download the content of `url` and summarize it.", |
|
"Summarize the content of the web page at `url`.", |
|
], |
|
inputs=["url"], |
|
answer="summary = summarizer(text_downloader(url))", |
|
), |
|
Problem( |
|
task=["generate a video from it.", "Create an animation from the last result."], |
|
inputs=[], |
|
answer="video_generator(summary)", |
|
), |
|
], |
|
] |
|
|
|
|
|
def get_theoretical_tools(agent_answer, theoretical_answer, code_answer): |
|
if not isinstance(theoretical_answer, list): |
|
return {name for name in TEST_TOOLS if name in code_answer} |
|
|
|
if isinstance(agent_answer, dict): |
|
for one_answer, one_code in zip(theoretical_answer, code_answer): |
|
if one_answer in agent_answer.values(): |
|
return {name for name in TEST_TOOLS if name in one_code} |
|
|
|
for one_answer, one_code in zip(theoretical_answer, code_answer): |
|
if agent_answer == one_answer: |
|
return {name for name in TEST_TOOLS if name in one_code} |
|
|
|
return {name for name in TEST_TOOLS if name in code_answer[0]} |
|
|
|
|
|
def evaluate_code(code, inputs=None, state=None, verbose=False, return_interpretor_error=False): |
|
tools = BASE_PYTHON_TOOLS.copy() |
|
for name, tool in TEST_TOOLS.items(): |
|
if name not in code: |
|
continue |
|
tools[name] = tool |
|
|
|
if isinstance(inputs, dict): |
|
inputs = inputs.copy() |
|
elif inputs is not None: |
|
inputs = {inp: f"<<{inp}>>" for inp in inputs} |
|
|
|
if state is not None: |
|
state.update(inputs) |
|
else: |
|
state = inputs |
|
|
|
try: |
|
return evaluate(code, tools, state) |
|
except InterpretorError as e: |
|
return str(e) |
|
except Exception as e: |
|
if verbose: |
|
print(e) |
|
return None |
|
|
|
|
|
def score_code(agent_answer, theoretical_answer, verbose: bool = False): |
|
if verbose: |
|
print(agent_answer, theoretical_answer) |
|
theoretical_answer = theoretical_answer if isinstance(theoretical_answer, list) else [theoretical_answer] |
|
|
|
if agent_answer in theoretical_answer: |
|
if verbose: |
|
print("Perfect!") |
|
return 1 |
|
elif isinstance(agent_answer, dict) and any(v in theoretical_answer for v in agent_answer.values()): |
|
if verbose: |
|
print("Almsot perfect, result in state!") |
|
return 0.75 |
|
else: |
|
if verbose: |
|
print("Result is not the right one but code executed.") |
|
return 0.3 |
|
|
|
|
|
def evaluate_one_result(explanation, code, agent_answer, theoretical_answer, answer, verbose=False): |
|
tools_in_explanation = {name for name in TEST_TOOLS if f"`{name}`" in explanation} |
|
theoretical_tools = get_theoretical_tools(agent_answer, theoretical_answer, answer) |
|
if tools_in_explanation == theoretical_tools: |
|
tool_selection_score = 1.0 |
|
tool_selection_errors = None |
|
else: |
|
missing_tools = len(theoretical_tools - tools_in_explanation) |
|
unexpected_tools = len(tools_in_explanation - theoretical_tools) |
|
tool_selection_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools) |
|
|
|
tool_selection_errors = { |
|
"selected_tools": tools_in_explanation, |
|
"theoretical_tools": theoretical_tools, |
|
} |
|
|
|
tools_in_code = {name for name in TEST_TOOLS if name in code} |
|
if tools_in_code == theoretical_tools: |
|
tool_used_score = 1.0 |
|
tool_used_errors = None |
|
else: |
|
missing_tools = len(theoretical_tools - tools_in_code) |
|
unexpected_tools = len(tools_in_code - theoretical_tools) |
|
tool_used_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools) |
|
|
|
tool_used_errors = { |
|
"selected_tools": tools_in_explanation, |
|
"theoretical_tools": theoretical_tools, |
|
} |
|
|
|
score = score_code(agent_answer, theoretical_answer, verbose=verbose) |
|
if score < 1.0: |
|
code_errors = { |
|
"code_produced": code, |
|
"evaluation": agent_answer, |
|
"theoretical_answer": theoretical_answer, |
|
} |
|
else: |
|
code_errors = None |
|
|
|
return (tool_selection_score, tool_used_score, score), (tool_selection_errors, tool_used_errors, code_errors) |
|
|
|
|
|
def evaluate_agent(agent, batch_size=8, verbose=False, return_errors=False): |
|
""" |
|
Evaluates a new agent on all `EVALUATION_TASKS`. |
|
|
|
Example: |
|
|
|
```py |
|
agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key) |
|
bads = new_evaluate_agent(agent) |
|
for bad in bads: |
|
print(bad) |
|
``` |
|
""" |
|
|
|
agent_tools = set(agent.toolbox.keys()) |
|
if agent_tools != set(TEST_TOOLS): |
|
missing_tools = set(TEST_TOOLS) - agent_tools |
|
unexpected_tools = set(agent_tools) - TEST_TOOLS |
|
raise ValueError( |
|
f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}." |
|
) |
|
|
|
eval_tasks = [] |
|
eval_idx = [] |
|
for idx, pb in enumerate(EVALUATION_TASKS): |
|
if isinstance(pb.task, list): |
|
eval_tasks.extend(pb.task) |
|
eval_idx.extend([idx] * len(pb.task)) |
|
else: |
|
eval_tasks.append(pb.task) |
|
eval_idx.append(idx) |
|
|
|
tool_selection_score = 0 |
|
tool_used_score = 0 |
|
code_score = 0 |
|
|
|
if return_errors: |
|
tool_selection_errors = {} |
|
tool_used_errors = {} |
|
code_errors = {} |
|
|
|
for start_idx in range(0, len(eval_tasks), batch_size): |
|
end_idx = min(start_idx + batch_size, len(eval_tasks)) |
|
batch_tasks = eval_tasks[start_idx:end_idx] |
|
|
|
prompts = [agent.format_prompt(task) for task in batch_tasks] |
|
results = agent.generate_many(prompts, stop=["Task:"]) |
|
|
|
for idx, result in enumerate(results): |
|
problem = EVALUATION_TASKS[eval_idx[start_idx + idx]] |
|
if verbose: |
|
print(f"====Task {start_idx + idx}====\n{batch_tasks[idx]}\n") |
|
explanation, code = clean_code_for_run(result) |
|
|
|
|
|
agent_answer = evaluate_code(code, problem.inputs, verbose=verbose) |
|
if isinstance(problem.answer, list): |
|
theoretical_answer = [evaluate_code(answer, problem.inputs) for answer in problem.answer] |
|
else: |
|
theoretical_answer = evaluate_code(problem.answer, problem.inputs) |
|
|
|
scores, errors = evaluate_one_result( |
|
explanation, code, agent_answer, theoretical_answer, problem.answer, verbose=verbose |
|
) |
|
|
|
tool_selection_score += scores[0] |
|
tool_used_score += scores[1] |
|
code_score += scores[2] |
|
|
|
if return_errors: |
|
if errors[0] is not None: |
|
tool_selection_errors[batch_tasks[idx]] = errors[0] |
|
if errors[1] is not None: |
|
tool_used_errors[batch_tasks[idx]] = errors[1] |
|
if errors[2] is not None: |
|
code_errors[batch_tasks[idx]] = errors[2] |
|
|
|
scores = { |
|
"tool selection score": 100 * (tool_selection_score / len(eval_tasks)), |
|
"tool used score": 100 * (tool_used_score / len(eval_tasks)), |
|
"code score": 100 * (code_score / len(eval_tasks)), |
|
} |
|
|
|
if return_errors: |
|
return scores, tool_selection_errors, tool_used_errors, code_errors |
|
else: |
|
return scores |
|
|
|
|
|
def evaluate_chat_agent(agent, verbose=False, return_errors=False): |
|
""" |
|
Evaluates a new agent on all `EVALUATION_CHATS`. |
|
|
|
Example: |
|
|
|
```py |
|
agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key) |
|
bads = new_evaluate_agent(agent) |
|
for bad in bads: |
|
print(bad) |
|
``` |
|
""" |
|
|
|
agent_tools = set(agent.toolbox.keys()) |
|
if agent_tools != set(TEST_TOOLS): |
|
missing_tools = set(TEST_TOOLS) - agent_tools |
|
unexpected_tools = agent_tools - set(TEST_TOOLS) |
|
raise ValueError( |
|
f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}." |
|
) |
|
|
|
tool_selection_score = 0 |
|
tool_used_score = 0 |
|
code_score = 0 |
|
total_steps = 0 |
|
|
|
if return_errors: |
|
tool_selection_errors = {} |
|
tool_used_errors = {} |
|
code_errors = {} |
|
|
|
for chat_problem in EVALUATION_CHATS: |
|
if isinstance(chat_problem[0].task, str): |
|
resolved_problems = [chat_problem] |
|
else: |
|
resolved_problems = [ |
|
[Problem(task=pb.task[i], inputs=pb.inputs, answer=pb.answer) for pb in chat_problem] |
|
for i in range(len(chat_problem[0].task)) |
|
] |
|
for problem in resolved_problems: |
|
agent.prepare_for_new_chat() |
|
agent_state = {} |
|
theoretical_state = ( |
|
[{} for _ in range(len(problem[0].answer))] if isinstance(problem[0].answer, list) else {} |
|
) |
|
|
|
for step, step_problem in enumerate(problem): |
|
if verbose: |
|
print(step_problem.task) |
|
total_steps += 1 |
|
prompt = agent.format_prompt(step_problem.task, chat_mode=True) |
|
result = agent.generate_one(prompt, stop=["Human:", "====="]) |
|
agent.chat_history = prompt + result + "\n" |
|
|
|
explanation, code = clean_code_for_chat(result) |
|
|
|
if verbose: |
|
print(f"==Explanation from the agent==\n{explanation}") |
|
print(f"\n==Code generated by the agent==\n{code}") |
|
|
|
|
|
agent_answer = evaluate_code(code, step_problem.inputs, state=agent_state, verbose=verbose) |
|
|
|
answer = step_problem.answer |
|
if isinstance(answer, list): |
|
theoretical_answer = [ |
|
evaluate_code(a, step_problem.inputs, state=state) |
|
for a, state in zip(answer, theoretical_state) |
|
] |
|
else: |
|
theoretical_answer = evaluate_code(answer, step_problem.inputs, state=theoretical_state) |
|
|
|
scores, errors = evaluate_one_result( |
|
explanation, code, agent_answer, theoretical_answer, answer, verbose=verbose |
|
) |
|
|
|
tool_selection_score += scores[0] |
|
tool_used_score += scores[1] |
|
code_score += scores[2] |
|
|
|
if return_errors: |
|
if errors[0] is not None: |
|
tool_selection_errors[step_problem.task] = errors[0] |
|
if errors[1] is not None: |
|
tool_used_errors[step_problem.task] = errors[1] |
|
if errors[2] is not None: |
|
code_errors[step_problem.task] = errors[2] |
|
|
|
scores = { |
|
"tool selection score": 100 * (tool_selection_score / total_steps), |
|
"tool used score": 100 * (tool_used_score / total_steps), |
|
"code score": 100 * (code_score / total_steps), |
|
} |
|
|
|
if return_errors: |
|
return scores, tool_selection_errors, tool_used_errors, code_errors |
|
else: |
|
return scores |
|
|