|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch - TF 2.0 general utilities.""" |
|
|
|
|
|
import os |
|
import re |
|
|
|
import numpy |
|
|
|
from .utils import ExplicitEnum, expand_dims, is_numpy_array, is_torch_tensor, logging, reshape, squeeze, tensor_size |
|
from .utils import transpose as transpose_func |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class TransposeType(ExplicitEnum): |
|
""" |
|
Possible ... |
|
""" |
|
|
|
NO = "no" |
|
SIMPLE = "simple" |
|
CONV1D = "conv1d" |
|
CONV2D = "conv2d" |
|
|
|
|
|
def convert_tf_weight_name_to_pt_weight_name( |
|
tf_name, start_prefix_to_remove="", tf_weight_shape=None, name_scope=None |
|
): |
|
""" |
|
Convert a TF 2.0 model variable name in a pytorch model weight name. |
|
|
|
Conventions for TF2.0 scopes -> PyTorch attribute names conversions: |
|
|
|
- '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) |
|
- '_._' is replaced by a new level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) |
|
|
|
return tuple with: |
|
|
|
- pytorch model weight name |
|
- transpose: `TransposeType` member indicating whether and how TF2.0 and PyTorch weights matrices should be |
|
transposed with regards to each other |
|
""" |
|
if name_scope is not None: |
|
if not tf_name.startswith(name_scope): |
|
raise ValueError( |
|
f"Weight name {tf_name} does not start with name_scope {name_scope}. This is an internal error " |
|
"in Transformers, so (unless you were doing something really evil) please open an issue to report it!" |
|
) |
|
tf_name = tf_name[len(name_scope) :] |
|
tf_name = tf_name.lstrip("/") |
|
tf_name = tf_name.replace(":0", "") |
|
tf_name = re.sub( |
|
r"/[^/]*___([^/]*)/", r"/\1/", tf_name |
|
) |
|
tf_name = tf_name.replace( |
|
"_._", "/" |
|
) |
|
tf_name = re.sub(r"//+", "/", tf_name) |
|
tf_name = tf_name.split("/") |
|
|
|
if len(tf_name) > 1: |
|
tf_name = tf_name[1:] |
|
|
|
tf_weight_shape = list(tf_weight_shape) |
|
|
|
|
|
if tf_name[-1] == "kernel" and tf_weight_shape is not None and len(tf_weight_shape) == 4: |
|
transpose = TransposeType.CONV2D |
|
elif tf_name[-1] == "kernel" and tf_weight_shape is not None and len(tf_weight_shape) == 3: |
|
transpose = TransposeType.CONV1D |
|
elif bool( |
|
tf_name[-1] in ["kernel", "pointwise_kernel", "depthwise_kernel"] |
|
or "emb_projs" in tf_name |
|
or "out_projs" in tf_name |
|
): |
|
transpose = TransposeType.SIMPLE |
|
else: |
|
transpose = TransposeType.NO |
|
|
|
|
|
if tf_name[-1] == "kernel" or tf_name[-1] == "embeddings" or tf_name[-1] == "gamma": |
|
tf_name[-1] = "weight" |
|
if tf_name[-1] == "beta": |
|
tf_name[-1] = "bias" |
|
|
|
|
|
if tf_name[-1] == "pointwise_kernel" or tf_name[-1] == "depthwise_kernel": |
|
tf_name[-1] = tf_name[-1].replace("_kernel", ".weight") |
|
|
|
|
|
tf_name = ".".join(tf_name) |
|
if start_prefix_to_remove: |
|
tf_name = tf_name.replace(start_prefix_to_remove, "", 1) |
|
|
|
return tf_name, transpose |
|
|
|
|
|
def apply_transpose(transpose: TransposeType, weight, match_shape=None, pt_to_tf=True): |
|
""" |
|
Apply a transpose to some weight then tries to reshape the weight to the same shape as a given shape, all in a |
|
framework agnostic way. |
|
""" |
|
if transpose is TransposeType.CONV2D: |
|
|
|
|
|
|
|
axes = (2, 3, 1, 0) if pt_to_tf else (3, 2, 0, 1) |
|
weight = transpose_func(weight, axes=axes) |
|
elif transpose is TransposeType.CONV1D: |
|
|
|
|
|
|
|
weight = transpose_func(weight, axes=(2, 1, 0)) |
|
elif transpose is TransposeType.SIMPLE: |
|
weight = transpose_func(weight) |
|
|
|
if match_shape is None: |
|
return weight |
|
|
|
if len(match_shape) < len(weight.shape): |
|
weight = squeeze(weight) |
|
elif len(match_shape) > len(weight.shape): |
|
weight = expand_dims(weight, axis=0) |
|
|
|
if list(match_shape) != list(weight.shape): |
|
try: |
|
weight = reshape(weight, match_shape) |
|
except AssertionError as e: |
|
e.args += (match_shape, match_shape) |
|
raise e |
|
|
|
return weight |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_pytorch_checkpoint_in_tf2_model( |
|
tf_model, |
|
pytorch_checkpoint_path, |
|
tf_inputs=None, |
|
allow_missing_keys=False, |
|
output_loading_info=False, |
|
_prefix=None, |
|
tf_to_pt_weight_rename=None, |
|
): |
|
"""Load pytorch checkpoints in a TF 2.0 model""" |
|
try: |
|
import tensorflow as tf |
|
import torch |
|
except ImportError: |
|
logger.error( |
|
"Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " |
|
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
|
|
|
|
if isinstance(pytorch_checkpoint_path, str): |
|
pytorch_checkpoint_path = [pytorch_checkpoint_path] |
|
|
|
|
|
pt_state_dict = {} |
|
for path in pytorch_checkpoint_path: |
|
pt_path = os.path.abspath(path) |
|
logger.info(f"Loading PyTorch weights from {pt_path}") |
|
pt_state_dict.update(torch.load(pt_path, map_location="cpu")) |
|
|
|
logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters") |
|
|
|
return load_pytorch_weights_in_tf2_model( |
|
tf_model, |
|
pt_state_dict, |
|
tf_inputs=tf_inputs, |
|
allow_missing_keys=allow_missing_keys, |
|
output_loading_info=output_loading_info, |
|
_prefix=_prefix, |
|
tf_to_pt_weight_rename=tf_to_pt_weight_rename, |
|
) |
|
|
|
|
|
def load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=None, allow_missing_keys=False): |
|
"""Load pytorch checkpoints in a TF 2.0 model""" |
|
pt_state_dict = pt_model.state_dict() |
|
|
|
return load_pytorch_weights_in_tf2_model( |
|
tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys |
|
) |
|
|
|
|
|
def load_pytorch_weights_in_tf2_model( |
|
tf_model, |
|
pt_state_dict, |
|
tf_inputs=None, |
|
allow_missing_keys=False, |
|
output_loading_info=False, |
|
_prefix=None, |
|
tf_to_pt_weight_rename=None, |
|
): |
|
"""Load pytorch state_dict in a TF 2.0 model.""" |
|
try: |
|
import tensorflow as tf |
|
import torch |
|
except ImportError: |
|
logger.error( |
|
"Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " |
|
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
|
|
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()} |
|
return load_pytorch_state_dict_in_tf2_model( |
|
tf_model, |
|
pt_state_dict, |
|
tf_inputs=tf_inputs, |
|
allow_missing_keys=allow_missing_keys, |
|
output_loading_info=output_loading_info, |
|
_prefix=_prefix, |
|
tf_to_pt_weight_rename=tf_to_pt_weight_rename, |
|
) |
|
|
|
|
|
def load_pytorch_state_dict_in_tf2_model( |
|
tf_model, |
|
pt_state_dict, |
|
tf_inputs=None, |
|
allow_missing_keys=False, |
|
output_loading_info=False, |
|
_prefix=None, |
|
tf_to_pt_weight_rename=None, |
|
ignore_mismatched_sizes=False, |
|
): |
|
"""Load a pytorch state_dict in a TF 2.0 model. pt_state_dict can be either an actual dict or a lazy-loading |
|
safetensors archive created with the safe_open() function.""" |
|
import tensorflow as tf |
|
from keras import backend as K |
|
|
|
if tf_inputs is None: |
|
tf_inputs = tf_model.dummy_inputs |
|
|
|
if _prefix is None: |
|
_prefix = "" |
|
if tf_inputs: |
|
with tf.name_scope(_prefix): |
|
tf_model(tf_inputs, training=False) |
|
|
|
tf_keys_to_pt_keys = {} |
|
for key in pt_state_dict.keys(): |
|
new_key = None |
|
if "gamma" in key: |
|
new_key = key.replace("gamma", "weight") |
|
if "beta" in key: |
|
new_key = key.replace("beta", "bias") |
|
if "running_var" in key: |
|
new_key = key.replace("running_var", "moving_variance") |
|
if "running_mean" in key: |
|
new_key = key.replace("running_mean", "moving_mean") |
|
|
|
|
|
key_components = key.split(".") |
|
name = None |
|
if key_components[-3::2] == ["parametrizations", "original0"]: |
|
name = key_components[-2] + "_g" |
|
elif key_components[-3::2] == ["parametrizations", "original1"]: |
|
name = key_components[-2] + "_v" |
|
if name is not None: |
|
key_components = key_components[:-3] + [name] |
|
new_key = ".".join(key_components) |
|
|
|
if new_key is None: |
|
new_key = key |
|
tf_keys_to_pt_keys[new_key] = key |
|
|
|
|
|
|
|
|
|
|
|
start_prefix_to_remove = "" |
|
if not any(s.startswith(tf_model.base_model_prefix) for s in tf_keys_to_pt_keys.keys()): |
|
start_prefix_to_remove = tf_model.base_model_prefix + "." |
|
|
|
symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights |
|
tf_loaded_numel = 0 |
|
all_pytorch_weights = set(tf_keys_to_pt_keys.keys()) |
|
missing_keys = [] |
|
mismatched_keys = [] |
|
is_safetensor_archive = hasattr(pt_state_dict, "get_tensor") |
|
for symbolic_weight in symbolic_weights: |
|
sw_name = symbolic_weight.name |
|
name, transpose = convert_tf_weight_name_to_pt_weight_name( |
|
sw_name, |
|
start_prefix_to_remove=start_prefix_to_remove, |
|
tf_weight_shape=symbolic_weight.shape, |
|
name_scope=_prefix, |
|
) |
|
if tf_to_pt_weight_rename is not None: |
|
name = tf_to_pt_weight_rename(name) |
|
|
|
|
|
if name not in tf_keys_to_pt_keys: |
|
if allow_missing_keys: |
|
missing_keys.append(name) |
|
continue |
|
elif tf_model._keys_to_ignore_on_load_missing is not None: |
|
|
|
if any(re.search(pat, name) is not None for pat in tf_model._keys_to_ignore_on_load_missing): |
|
continue |
|
raise AttributeError(f"{name} not found in PyTorch model") |
|
state_dict_name = tf_keys_to_pt_keys[name] |
|
if is_safetensor_archive: |
|
array = pt_state_dict.get_tensor(state_dict_name) |
|
else: |
|
array = pt_state_dict[state_dict_name] |
|
try: |
|
array = apply_transpose(transpose, array, symbolic_weight.shape) |
|
except tf.errors.InvalidArgumentError as e: |
|
if not ignore_mismatched_sizes: |
|
error_msg = str(e) |
|
error_msg += ( |
|
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." |
|
) |
|
raise tf.errors.InvalidArgumentError(error_msg) |
|
else: |
|
mismatched_keys.append((name, array.shape, symbolic_weight.shape)) |
|
continue |
|
|
|
tf_loaded_numel += tensor_size(array) |
|
|
|
K.set_value(symbolic_weight, array) |
|
del array |
|
all_pytorch_weights.discard(name) |
|
|
|
logger.info(f"Loaded {tf_loaded_numel:,} parameters in the TF 2.0 model.") |
|
|
|
unexpected_keys = list(all_pytorch_weights) |
|
|
|
if tf_model._keys_to_ignore_on_load_missing is not None: |
|
for pat in tf_model._keys_to_ignore_on_load_missing: |
|
missing_keys = [k for k in missing_keys if re.search(pat, k) is None] |
|
if tf_model._keys_to_ignore_on_load_unexpected is not None: |
|
for pat in tf_model._keys_to_ignore_on_load_unexpected: |
|
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
"Some weights of the PyTorch model were not used when initializing the TF 2.0 model" |
|
f" {tf_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" |
|
f" {tf_model.__class__.__name__} from a PyTorch model trained on another task or with another architecture" |
|
" (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n- This IS" |
|
f" NOT expected if you are initializing {tf_model.__class__.__name__} from a PyTorch model that you expect" |
|
" to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a" |
|
" BertForSequenceClassification model)." |
|
) |
|
else: |
|
logger.warning(f"All PyTorch model weights were used when initializing {tf_model.__class__.__name__}.\n") |
|
if len(missing_keys) > 0: |
|
logger.warning( |
|
f"Some weights or buffers of the TF 2.0 model {tf_model.__class__.__name__} were not initialized from the" |
|
f" PyTorch model and are newly initialized: {missing_keys}\nYou should probably TRAIN this model on a" |
|
" down-stream task to be able to use it for predictions and inference." |
|
) |
|
else: |
|
logger.warning( |
|
f"All the weights of {tf_model.__class__.__name__} were initialized from the PyTorch model.\n" |
|
"If your task is similar to the task the model of the checkpoint was trained on, " |
|
f"you can already use {tf_model.__class__.__name__} for predictions without further training." |
|
) |
|
|
|
if len(mismatched_keys) > 0: |
|
mismatched_warning = "\n".join( |
|
[ |
|
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" |
|
for key, shape1, shape2 in mismatched_keys |
|
] |
|
) |
|
logger.warning( |
|
f"Some weights of {tf_model.__class__.__name__} were not initialized from the model checkpoint" |
|
f" are newly initialized because the shapes did not" |
|
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able" |
|
" to use it for predictions and inference." |
|
) |
|
|
|
if output_loading_info: |
|
loading_info = { |
|
"missing_keys": missing_keys, |
|
"unexpected_keys": unexpected_keys, |
|
"mismatched_keys": mismatched_keys, |
|
} |
|
return tf_model, loading_info |
|
|
|
return tf_model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_tf2_checkpoint_in_pytorch_model( |
|
pt_model, tf_checkpoint_path, tf_inputs=None, allow_missing_keys=False, output_loading_info=False |
|
): |
|
""" |
|
Load TF 2.0 HDF5 checkpoint in a PyTorch model We use HDF5 to easily do transfer learning (see |
|
https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357). |
|
""" |
|
try: |
|
import tensorflow as tf |
|
import torch |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " |
|
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
|
|
import transformers |
|
|
|
from .modeling_tf_utils import load_tf_weights |
|
|
|
logger.info(f"Loading TensorFlow weights from {tf_checkpoint_path}") |
|
|
|
|
|
tf_model_class_name = "TF" + pt_model.__class__.__name__ |
|
tf_model_class = getattr(transformers, tf_model_class_name) |
|
tf_model = tf_model_class(pt_model.config) |
|
|
|
if tf_inputs is None: |
|
tf_inputs = tf_model.dummy_inputs |
|
|
|
if tf_inputs is not None: |
|
tf_model(tf_inputs, training=False) |
|
|
|
load_tf_weights(tf_model, tf_checkpoint_path) |
|
|
|
return load_tf2_model_in_pytorch_model( |
|
pt_model, tf_model, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info |
|
) |
|
|
|
|
|
def load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=False, output_loading_info=False): |
|
"""Load TF 2.0 model in a pytorch model""" |
|
weights = tf_model.weights |
|
|
|
return load_tf2_weights_in_pytorch_model( |
|
pt_model, weights, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info |
|
) |
|
|
|
|
|
def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=False, output_loading_info=False): |
|
"""Load TF2.0 symbolic weights in a PyTorch model""" |
|
try: |
|
import tensorflow as tf |
|
import torch |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " |
|
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
|
|
tf_state_dict = {tf_weight.name: tf_weight.numpy() for tf_weight in tf_weights} |
|
return load_tf2_state_dict_in_pytorch_model( |
|
pt_model, tf_state_dict, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info |
|
) |
|
|
|
|
|
def load_tf2_state_dict_in_pytorch_model(pt_model, tf_state_dict, allow_missing_keys=False, output_loading_info=False): |
|
import torch |
|
|
|
new_pt_params_dict = {} |
|
current_pt_params_dict = dict(pt_model.named_parameters()) |
|
|
|
|
|
|
|
start_prefix_to_remove = "" |
|
if not any(s.startswith(pt_model.base_model_prefix) for s in current_pt_params_dict.keys()): |
|
start_prefix_to_remove = pt_model.base_model_prefix + "." |
|
|
|
|
|
tf_weights_map = {} |
|
for name, tf_weight in tf_state_dict.items(): |
|
pt_name, transpose = convert_tf_weight_name_to_pt_weight_name( |
|
name, start_prefix_to_remove=start_prefix_to_remove, tf_weight_shape=tf_weight.shape |
|
) |
|
tf_weights_map[pt_name] = (tf_weight, transpose) |
|
|
|
all_tf_weights = set(tf_weights_map.keys()) |
|
loaded_pt_weights_data_ptr = {} |
|
missing_keys_pt = [] |
|
for pt_weight_name, pt_weight in current_pt_params_dict.items(): |
|
|
|
if pt_weight.data_ptr() in loaded_pt_weights_data_ptr: |
|
new_pt_params_dict[pt_weight_name] = loaded_pt_weights_data_ptr[pt_weight.data_ptr()] |
|
continue |
|
|
|
pt_weight_name_to_check = pt_weight_name |
|
|
|
key_components = pt_weight_name.split(".") |
|
name = None |
|
if key_components[-3::2] == ["parametrizations", "original0"]: |
|
name = key_components[-2] + "_g" |
|
elif key_components[-3::2] == ["parametrizations", "original1"]: |
|
name = key_components[-2] + "_v" |
|
if name is not None: |
|
key_components = key_components[:-3] + [name] |
|
pt_weight_name_to_check = ".".join(key_components) |
|
|
|
|
|
if pt_weight_name_to_check not in tf_weights_map: |
|
if allow_missing_keys: |
|
missing_keys_pt.append(pt_weight_name) |
|
continue |
|
|
|
raise AttributeError(f"{pt_weight_name} not found in TF 2.0 model") |
|
|
|
array, transpose = tf_weights_map[pt_weight_name_to_check] |
|
|
|
array = apply_transpose(transpose, array, pt_weight.shape, pt_to_tf=False) |
|
|
|
if numpy.isscalar(array): |
|
array = numpy.array(array) |
|
if not is_torch_tensor(array) and not is_numpy_array(array): |
|
array = array.numpy() |
|
if is_numpy_array(array): |
|
|
|
array = torch.from_numpy(array) |
|
|
|
new_pt_params_dict[pt_weight_name] = array |
|
loaded_pt_weights_data_ptr[pt_weight.data_ptr()] = array |
|
all_tf_weights.discard(pt_weight_name) |
|
|
|
missing_keys, unexpected_keys = pt_model.load_state_dict(new_pt_params_dict, strict=False) |
|
missing_keys += missing_keys_pt |
|
|
|
|
|
|
|
if pt_model._keys_to_ignore_on_load_missing is not None: |
|
for pat in pt_model._keys_to_ignore_on_load_missing: |
|
missing_keys = [k for k in missing_keys if re.search(pat, k) is None] |
|
|
|
if pt_model._keys_to_ignore_on_load_unexpected is not None: |
|
for pat in pt_model._keys_to_ignore_on_load_unexpected: |
|
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
"Some weights of the TF 2.0 model were not used when initializing the PyTorch model" |
|
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" |
|
f" {pt_model.__class__.__name__} from a TF 2.0 model trained on another task or with another architecture" |
|
" (e.g. initializing a BertForSequenceClassification model from a TFBertForPreTraining model).\n- This IS" |
|
f" NOT expected if you are initializing {pt_model.__class__.__name__} from a TF 2.0 model that you expect" |
|
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" |
|
" TFBertForSequenceClassification model)." |
|
) |
|
else: |
|
logger.warning(f"All TF 2.0 model weights were used when initializing {pt_model.__class__.__name__}.\n") |
|
if len(missing_keys) > 0: |
|
logger.warning( |
|
f"Some weights of {pt_model.__class__.__name__} were not initialized from the TF 2.0 model and are newly" |
|
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" |
|
" use it for predictions and inference." |
|
) |
|
else: |
|
logger.warning( |
|
f"All the weights of {pt_model.__class__.__name__} were initialized from the TF 2.0 model.\n" |
|
"If your task is similar to the task the model of the checkpoint was trained on, " |
|
f"you can already use {pt_model.__class__.__name__} for predictions without further training." |
|
) |
|
|
|
logger.info(f"Weights or buffers not loaded from TF 2.0 model: {all_tf_weights}") |
|
|
|
if output_loading_info: |
|
loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys} |
|
return pt_model, loading_info |
|
|
|
return pt_model |
|
|