|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Sequence feature extraction class for common feature extractors to preprocess sequences. |
|
""" |
|
from typing import Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
|
|
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin |
|
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class SequenceFeatureExtractor(FeatureExtractionMixin): |
|
""" |
|
This is a general feature extraction class for speech recognition. |
|
|
|
Args: |
|
feature_size (`int`): |
|
The feature dimension of the extracted features. |
|
sampling_rate (`int`): |
|
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). |
|
padding_value (`float`): |
|
The value that is used to fill the padding values / vectors. |
|
""" |
|
|
|
def __init__(self, feature_size: int, sampling_rate: int, padding_value: float, **kwargs): |
|
self.feature_size = feature_size |
|
self.sampling_rate = sampling_rate |
|
self.padding_value = padding_value |
|
|
|
self.padding_side = kwargs.pop("padding_side", "right") |
|
self.return_attention_mask = kwargs.pop("return_attention_mask", True) |
|
|
|
super().__init__(**kwargs) |
|
|
|
def pad( |
|
self, |
|
processed_features: Union[ |
|
BatchFeature, |
|
List[BatchFeature], |
|
Dict[str, BatchFeature], |
|
Dict[str, List[BatchFeature]], |
|
List[Dict[str, BatchFeature]], |
|
], |
|
padding: Union[bool, str, PaddingStrategy] = True, |
|
max_length: Optional[int] = None, |
|
truncation: bool = False, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
) -> BatchFeature: |
|
""" |
|
Pad input values / input vectors or a batch of input values / input vectors up to predefined length or to the |
|
max sequence length in the batch. |
|
|
|
Padding side (left/right) padding values are defined at the feature extractor level (with `self.padding_side`, |
|
`self.padding_value`) |
|
|
|
<Tip> |
|
|
|
If the `processed_features` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the |
|
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of |
|
PyTorch tensors, you will lose the specific device of your tensors however. |
|
|
|
</Tip> |
|
|
|
Args: |
|
processed_features ([`BatchFeature`], list of [`BatchFeature`], `Dict[str, List[float]]`, `Dict[str, List[List[float]]` or `List[Dict[str, List[float]]]`): |
|
Processed inputs. Can represent one input ([`BatchFeature`] or `Dict[str, List[float]]`) or a batch of |
|
input values / vectors (list of [`BatchFeature`], *Dict[str, List[List[float]]]* or *List[Dict[str, |
|
List[float]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader |
|
collate function. |
|
|
|
Instead of `List[float]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), |
|
see the note above for the return type. |
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding |
|
index) among: |
|
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
max_length (`int`, *optional*): |
|
Maximum length of the returned list and optionally padding length (see above). |
|
truncation (`bool`): |
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`. |
|
pad_to_multiple_of (`int`, *optional*): |
|
If set will pad the sequence to a multiple of the provided value. |
|
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability |
|
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. |
|
return_attention_mask (`bool`, *optional*): |
|
Whether to return the attention mask. If left to the default, will return the attention mask according |
|
to the specific feature_extractor's default. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors instead of list of python integers. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return Numpy `np.ndarray` objects. |
|
""" |
|
|
|
|
|
if isinstance(processed_features, (list, tuple)) and isinstance(processed_features[0], (dict, BatchFeature)): |
|
processed_features = { |
|
key: [example[key] for example in processed_features] for key in processed_features[0].keys() |
|
} |
|
|
|
|
|
if self.model_input_names[0] not in processed_features: |
|
raise ValueError( |
|
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" |
|
f" to this method that includes {self.model_input_names[0]}, but you provided" |
|
f" {list(processed_features.keys())}" |
|
) |
|
|
|
required_input = processed_features[self.model_input_names[0]] |
|
return_attention_mask = ( |
|
return_attention_mask if return_attention_mask is not None else self.return_attention_mask |
|
) |
|
|
|
if len(required_input) == 0: |
|
if return_attention_mask: |
|
processed_features["attention_mask"] = [] |
|
return processed_features |
|
|
|
|
|
|
|
|
|
|
|
first_element = required_input[0] |
|
if isinstance(first_element, (list, tuple)): |
|
|
|
index = 0 |
|
while len(required_input[index]) == 0: |
|
index += 1 |
|
if index < len(required_input): |
|
first_element = required_input[index][0] |
|
|
|
if return_tensors is None: |
|
if is_tf_tensor(first_element): |
|
return_tensors = "tf" |
|
elif is_torch_tensor(first_element): |
|
return_tensors = "pt" |
|
elif isinstance(first_element, (int, float, list, tuple, np.ndarray)): |
|
return_tensors = "np" |
|
else: |
|
raise ValueError( |
|
f"type of {first_element} unknown: {type(first_element)}. " |
|
"Should be one of a python, numpy, pytorch or tensorflow object." |
|
) |
|
|
|
for key, value in processed_features.items(): |
|
if isinstance(value[0], (int, float)): |
|
processed_features[key] = to_numpy(value) |
|
else: |
|
processed_features[key] = [to_numpy(v) for v in value] |
|
|
|
|
|
padding_strategy = self._get_padding_strategies(padding=padding, max_length=max_length) |
|
|
|
required_input = processed_features[self.model_input_names[0]] |
|
|
|
batch_size = len(required_input) |
|
if not all(len(v) == batch_size for v in processed_features.values()): |
|
raise ValueError("Some items in the output dictionary have a different batch size than others.") |
|
|
|
truncated_inputs = [] |
|
for i in range(batch_size): |
|
inputs = {k: v[i] for k, v in processed_features.items()} |
|
|
|
inputs_slice = self._truncate( |
|
inputs, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
truncation=truncation, |
|
) |
|
truncated_inputs.append(inputs_slice) |
|
|
|
if padding_strategy == PaddingStrategy.LONGEST: |
|
|
|
max_length = max(len(input_slice[self.model_input_names[0]]) for input_slice in truncated_inputs) |
|
padding_strategy = PaddingStrategy.MAX_LENGTH |
|
|
|
batch_outputs = {} |
|
for i in range(batch_size): |
|
|
|
outputs = self._pad( |
|
truncated_inputs[i], |
|
max_length=max_length, |
|
padding_strategy=padding_strategy, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_attention_mask=return_attention_mask, |
|
) |
|
|
|
for key, value in outputs.items(): |
|
if key not in batch_outputs: |
|
batch_outputs[key] = [] |
|
if value.dtype is np.dtype(np.float64): |
|
value = value.astype(np.float32) |
|
batch_outputs[key].append(value) |
|
|
|
return BatchFeature(batch_outputs, tensor_type=return_tensors) |
|
|
|
def _pad( |
|
self, |
|
processed_features: Union[Dict[str, np.ndarray], BatchFeature], |
|
max_length: Optional[int] = None, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
) -> dict: |
|
""" |
|
Pad inputs (on left/right and up to predefined length or max length in the batch) |
|
|
|
Args: |
|
processed_features (`Union[Dict[str, np.ndarray], BatchFeature]`): |
|
Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch |
|
of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`) |
|
max_length (`int`, *optional*): |
|
Maximum length of the returned list and optionally padding length (see below) |
|
padding_strategy (`PaddingStrategy`, *optional*, default to `PaddingStrategy.DO_NOT_PAD`): |
|
PaddingStrategy to use for padding. |
|
|
|
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch |
|
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default) |
|
- PaddingStrategy.DO_NOT_PAD: Do not pad |
|
The feature_extractor padding sides are defined in self.padding_side: |
|
|
|
- 'left': pads on the left of the sequences |
|
- 'right': pads on the right of the sequences |
|
pad_to_multiple_of (`int`, *optional*): |
|
Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to |
|
enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs |
|
which benefit from having sequence lengths be a multiple of 128. |
|
return_attention_mask (`bool`, *optional*): |
|
Set to False to avoid returning attention mask (default: set to model specifics) |
|
""" |
|
required_input = processed_features[self.model_input_names[0]] |
|
|
|
if padding_strategy == PaddingStrategy.LONGEST: |
|
max_length = len(required_input) |
|
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): |
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of |
|
|
|
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) < max_length |
|
|
|
if return_attention_mask and "attention_mask" not in processed_features: |
|
processed_features["attention_mask"] = np.ones(len(required_input), dtype=np.int32) |
|
|
|
if needs_to_be_padded: |
|
difference = max_length - len(required_input) |
|
if self.padding_side == "right": |
|
if return_attention_mask: |
|
processed_features["attention_mask"] = np.pad( |
|
processed_features["attention_mask"], (0, difference) |
|
) |
|
padding_shape = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) |
|
processed_features[self.model_input_names[0]] = np.pad( |
|
required_input, padding_shape, "constant", constant_values=self.padding_value |
|
) |
|
elif self.padding_side == "left": |
|
if return_attention_mask: |
|
processed_features["attention_mask"] = np.pad( |
|
processed_features["attention_mask"], (difference, 0) |
|
) |
|
padding_shape = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) |
|
processed_features[self.model_input_names[0]] = np.pad( |
|
required_input, padding_shape, "constant", constant_values=self.padding_value |
|
) |
|
else: |
|
raise ValueError("Invalid padding strategy:" + str(self.padding_side)) |
|
|
|
return processed_features |
|
|
|
def _truncate( |
|
self, |
|
processed_features: Union[Dict[str, np.ndarray], BatchFeature], |
|
max_length: Optional[int] = None, |
|
pad_to_multiple_of: Optional[int] = None, |
|
truncation: Optional[bool] = None, |
|
): |
|
""" |
|
Truncate inputs to predefined length or max length in the batch |
|
|
|
Args: |
|
processed_features(`Union[Dict[str, np.ndarray], BatchFeature]`): |
|
Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch |
|
of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`) |
|
max_length (`int`, *optional*): |
|
maximum length of the returned list and optionally padding length (see below) |
|
pad_to_multiple_of (`int`, *optional*) : |
|
Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to |
|
enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs |
|
which benefit from having sequence lengths be a multiple of 128. |
|
truncation (`bool`, *optional*): |
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`. |
|
""" |
|
if not truncation: |
|
return processed_features |
|
elif truncation and max_length is None: |
|
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined.") |
|
|
|
required_input = processed_features[self.model_input_names[0]] |
|
|
|
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): |
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of |
|
|
|
needs_to_be_truncated = len(required_input) > max_length |
|
|
|
if needs_to_be_truncated: |
|
processed_features[self.model_input_names[0]] = processed_features[self.model_input_names[0]][:max_length] |
|
if "attention_mask" in processed_features: |
|
processed_features["attention_mask"] = processed_features["attention_mask"][:max_length] |
|
|
|
return processed_features |
|
|
|
def _get_padding_strategies(self, padding=False, max_length=None): |
|
""" |
|
Find the correct padding strategy |
|
""" |
|
|
|
|
|
if padding is not False: |
|
if padding is True: |
|
padding_strategy = PaddingStrategy.LONGEST |
|
elif not isinstance(padding, PaddingStrategy): |
|
padding_strategy = PaddingStrategy(padding) |
|
elif isinstance(padding, PaddingStrategy): |
|
padding_strategy = padding |
|
else: |
|
padding_strategy = PaddingStrategy.DO_NOT_PAD |
|
|
|
|
|
if max_length is None: |
|
if padding_strategy == PaddingStrategy.MAX_LENGTH: |
|
raise ValueError( |
|
f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" |
|
) |
|
|
|
|
|
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): |
|
raise ValueError( |
|
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" |
|
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." |
|
) |
|
|
|
return padding_strategy |
|
|