|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
from typing import Tuple |
|
|
|
from ..utils import cached_property, is_tf_available, logging, requires_backends |
|
from .benchmark_args_utils import BenchmarkArguments |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class TensorFlowBenchmarkArguments(BenchmarkArguments): |
|
deprecated_args = [ |
|
"no_inference", |
|
"no_cuda", |
|
"no_tpu", |
|
"no_speed", |
|
"no_memory", |
|
"no_env_print", |
|
"no_multi_process", |
|
] |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be |
|
deleted |
|
""" |
|
for deprecated_arg in self.deprecated_args: |
|
if deprecated_arg in kwargs: |
|
positive_arg = deprecated_arg[3:] |
|
kwargs[positive_arg] = not kwargs.pop(deprecated_arg) |
|
logger.warning( |
|
f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" |
|
f" {positive_arg}={kwargs[positive_arg]}" |
|
) |
|
self.tpu_name = kwargs.pop("tpu_name", self.tpu_name) |
|
self.device_idx = kwargs.pop("device_idx", self.device_idx) |
|
self.eager_mode = kwargs.pop("eager_mode", self.eager_mode) |
|
self.use_xla = kwargs.pop("use_xla", self.use_xla) |
|
super().__init__(**kwargs) |
|
|
|
tpu_name: str = field( |
|
default=None, |
|
metadata={"help": "Name of TPU"}, |
|
) |
|
device_idx: int = field( |
|
default=0, |
|
metadata={"help": "CPU / GPU device index. Defaults to 0."}, |
|
) |
|
eager_mode: bool = field(default=False, metadata={"help": "Benchmark models in eager model."}) |
|
use_xla: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." |
|
}, |
|
) |
|
|
|
@cached_property |
|
def _setup_tpu(self) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: |
|
requires_backends(self, ["tf"]) |
|
tpu = None |
|
if self.tpu: |
|
try: |
|
if self.tpu_name: |
|
tpu = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name) |
|
else: |
|
tpu = tf.distribute.cluster_resolver.TPUClusterResolver() |
|
except ValueError: |
|
tpu = None |
|
return tpu |
|
|
|
@cached_property |
|
def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: |
|
requires_backends(self, ["tf"]) |
|
if self.is_tpu: |
|
tf.config.experimental_connect_to_cluster(self._setup_tpu) |
|
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu) |
|
|
|
strategy = tf.distribute.TPUStrategy(self._setup_tpu) |
|
else: |
|
|
|
if self.is_gpu: |
|
|
|
tf.config.set_visible_devices(self.gpu_list[self.device_idx], "GPU") |
|
strategy = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}") |
|
else: |
|
tf.config.set_visible_devices([], "GPU") |
|
strategy = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}") |
|
|
|
return strategy |
|
|
|
@property |
|
def is_tpu(self) -> bool: |
|
requires_backends(self, ["tf"]) |
|
return self._setup_tpu is not None |
|
|
|
@property |
|
def strategy(self) -> "tf.distribute.Strategy": |
|
requires_backends(self, ["tf"]) |
|
return self._setup_strategy |
|
|
|
@property |
|
def gpu_list(self): |
|
requires_backends(self, ["tf"]) |
|
return tf.config.list_physical_devices("GPU") |
|
|
|
@property |
|
def n_gpu(self) -> int: |
|
requires_backends(self, ["tf"]) |
|
if self.cuda: |
|
return len(self.gpu_list) |
|
return 0 |
|
|
|
@property |
|
def is_gpu(self) -> bool: |
|
return self.n_gpu > 0 |
|
|